
CSE 505, Fall 2005, Assignment 4
Due: Tuesday 29 November 2005, 5:00PM

hw4.tar, available on the course website, contains several Caml files you will need.
Last updated: November 14
Advice: For problem 1, be warned that the “intellectual difficulty” is high, but the amount of code required
is low (sample solution adds 25 lines to main.ml and 7 lines to ast.ml). Do not hesitate to ask for help.

1. (Machines; Continuations) You are given an untyped-λ-calculus implementation that uses an “explicit
stack and environment” machine that is like the last machine considered in lecture 10. The interpreter
uses one tail-recursive function (i.e., a loop). On each iteration, we have the “current expression” to
be evaluated, the “environment” to evaluate variables and a “context stack” that encodes what to do
after the current expression. Note that when (1) creating a closure or (2) pushing an “expression to be
evaluated later” onto the stack, we store the current environment so that we can use that environment
later when (1) evaluating the function body or (2) evaluating the expression. (In lecture 10, we got
(1) right but (2) wrong; Dan has updated the lecture 10 materials to fix this bug.)

(a) Extend the machine to support pairs and conditionals (i.e., every expression and value form
defined except Letcc, Throw, and Continuation). You must maintain tail-recursion. Hints:

• Add 5 constructors to Ast.context elt, each “carrying” somewhere between 0 and 3 things.
• Add 4 cases to the outer match in loop and 5 cases to the inner match in loop (3 of which

need inner-inner matches).
• Raise RunTimeError if the program reads a field of a non-pair or branches on a non-boolean.
• Note the abstract syntax distinguishes between “pair builders” MP(e1,e2) and “pair values”
P(v1,v2). So the last step of evaluating MP(e1,e2) is to build an expression of the form
V(P(v1,v2)) (and the next iteration will then use the stack to “see what to do next”).

(b) Extend the machine to support (first-class) continuations. You must maintain tail-recursion.
To understand continuations, recall our evaluation-context semantics for λ-calculus:

E ::= [·] | E e | v E | (E, e) | (v,E) | if E then e1 else e2

e
p→ e′

E[e] → E[e′]

(λx. e) v
p→ e[v/x] (v1, v2).1

p→ v1 (v1, v2).2
p→ v2

if true then e1 else e2
p→ e1 if false then e1 else e2

p→ e2

A continuation represents “what to do for the rest of the program.” We can “grab the current
continuation” with letcc and “change the current continuation” with throw:

e ::= . . . | letcc x. e | throw e e | continuation E
v ::= . . . | continuation E
E ::= . . . | throw E e | throw v E

E[letcc x. e] → E[e[continuation E/x]]

E[throw (continuation E′) v] → E′[v]
Note the two new semantic rules use → not

p→. In English, letcc binds to x a “continuation value”
that stores the context that was current when the letcc was evaluated. (If x does not appear free
in e, then letcc x. e and e are equivalent.) When we throw to a continuation with E′ stored,
E′ becomes the current context (the “old E” disappears!). We are stuck if the first argument to
throw does not evaluate to a continuation. Hints:

• Add 2 constructors to Ast.context elt, each “carrying” 1 or 2 things.
• Add 2 cases to the outer match in loop and 2 or 3 cases to the inner match in loop (depending

on how you detect a non-continuation as the first argument to throw).
• Raise RunTimeError if the program tries to throw to a non-continuation.
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(c) Continuations are very powerful, but in this problem we use them for something basic: halting a
program. Change Main.allow halt such that:

• It takes an expression e and returns an expression e′.
• e can have free occurrences of the variable halt and call it as a function taking one argument,

i.e., halt e′′.
• If e evaluates to v without ever calling halt, then e′ evaluates to (true, v).
• If e evaluates after some number of steps to E[halt v], then e′ evaluates to (false, v).
• e′ contains e as a subexpression – that is, do not look at e, just wrap it with some outer code.

Sample solution is 3 lines. Put e in a function that takes halt as an argument. Pass this function
a function that contains a throw. Advice: Work out your solution on paper first.

2. (Subtyping) Implement a subtype-checker using q2.ml. That is, implement the is subtype function to
return true if and only if the first “type” it is passed (as defined by atype) is a subtype of the second,
given the mapping from type-names to types in ctxt. You may assume there are no recursive types
(see the extra credit), meaning no typecontext will ever map a name to a type that (transitively)
contains the name (even via more name-lookups). Your algorithm should support these notions of
subtyping:

• Named types are equivalent to their definitions. So a named type t1 is a subtype of t2 if the
name’s definition is a subtype of t2, and a type t3 if a subtype of a named type t4 if t3 is a
subtype of t4’s definition.

• Int is a subtype of Int.

• Function types have their usual contravariant-argument covariant-result subtyping.

• Tuples have width and depth subtyping.

• Sums have “anti”-width (supertype can have more constructors), depth (supertype can have
same constructor carrying a supertype), and permutation (order of constructors does not matter)
subtyping.

Notes:

• Sample solution is 23 lines. Matching on the pair (t1,t2) helps keep things concise. You can
make is subtype recursive, but since ctxt does not change, it’s more concise to make a recursive
helper function.

• If a named-type appears that is not in the context, raise the NoNamedType exception.

• You can use the provided lookup function for contexts and the lists with sum types; for the latter,
the caller should use a try expression.

3. (Polymorphic Types) Suppose we extend System F with a polymorphic let rec where let rec
α1, . . . , αn f x = e creates a recursive function with type parameters α1, . . . , αn and argument x.

(a) Give the appropriate typing rule for let rec α1, . . . , αn f x = e.

(b) Give a full typing derivation showing that this program can have type ∀α1∀α2.α1 → α2:
let rec α1, α2 f x = f[α1][α2] x.

(c) Suppose we have exceptions and raise has type exn→ α as in Caml and that Foo has type exn.
Give a full typing derivation showing that this program can have type ∀α1∀α2.α1 → α2:
Λα1. Λα2. λx. raise Foo.

(d) In general, suppose v is a Caml value of type ∀α1...∀αn.τ → α and α is not free in τ . In English,
what can you say about v?
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4. (Protocol Enforcement) Note: A skeleton for your solution is in q4.ml. Also note open is a Caml
keyword. You need to add only a few lines of code.
Suppose there are two functions, openup of type unit->unit and read of type unit->string, and it
is an error to call read before calling openup.

(a) client1 takes functions of type unit->unit and unit->string but cannot be trusted to obey
the protocol. Write dynamicCheck which should call client1 with functions that raise the
ProtocolViolation exception as soon as the protocol is violated else do the right thing.

(b) client2 has a different interface in which it is only passed one function, which returns a second
function when called. Write withholdRead which should call client2 with a function that when
called “does the open” and “provides the ability to read.”

(c) client3 has a different interface that is “more polymorphic.” Write useTypes which calls client3
with the functions it is passed.

(d) In English, explain why clients 2 and 3 cannot violate the protocol and why they are more efficient
than client 1.

(e) Suppose our protocol also has a close function of type unit->unit and it is an error to call read
after close. In English, explain which of the 3 approaches above will work in this setting and
why the other approaches do not work. (Note: There are language features and type systems that
do this sort of thing well, but we won’t have to time to investigate them.)

5. (Extra Credit)

(a) Use your implementation of continuations to support cooperative multithreading (warning: Dan
has not done this, but it’s a classic idea):
• Extend the syntax to support spawn(e) and yield.
• Write a source-to-source transformation that removes all uses of spawn and yield, i.e., do not

change interp.
• For simplicity, assume the input program does not use the variables _q or _ans. Change the

input program so that every function takes two more arguments _q and _ans (use currying)
and every function application passes on its _q and _ans. (We are passing “global variables”
through the program.) Wrap the whole program in a function that takes _q, _ans, spawn,
and yield and returns _ans.

• _q is the list (the queue) of non-running threads. _ans is the list of values produced by
threads. (Use pairs and booleans to encode lists.) Queue elements are continuations (that
ignore the value they are thrown). So _q and _ans start empty. spawn is just a function that
adds to the queue. yield is a function that ignores its argument, stores the running thread
on the queue, and starts the next waiting thread. (It uses letcc to “get what to store” and
throw to “start the next thread.”)

• When a thread terminates (i.e., the argument to spawn finishes), it adds its final value to the
front of _ans. When the last thread terminates, it adds its value to _ans and returns _ans.

• Threading is a bit silly in a language with no inter-thread communication; without _ans
spawning threads would have no effect on a program’s answer.

• For writing test programs, note that you can encode e1; e2 with (λx. e2)e1 provided x does
not occur free in e2.

(b) Extend your datatype-subtype checker to support recursive datatypes.

What to turn in:

• Caml source code in main.ml, q2.ml, and q4.ml. Put extra credit in different, suitably named files.

• Hard-copy answers to problems 3, 4d, and 4e.

Email your source code to Erika as firstname-lastname--hw4.tgz or firstname-lastname--hw4.zip.
Hard copy solutions should be put in Erika’s grad student mailbox, in the envelope outside her office, or
given to her directly.
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