
CSE 505, Fall 2005, Assignment 3
Due: Monday 14 November 2005, 5:00PM

hw3.tar, available on the course website, contains several Caml files you will need.
Last updated: October 31

Advice: Problems 1, 3c, and maybe 2a–c are excellent study problems for the midterm. (3c is “easy” for
an extra credit.) 2d–f are not good review for the midterm. If you are going to skip a problem, skip 2e.

1. One definition of lists is in terms of “empty,” “cons,” “is-empty,” “head,” and “tail”. This problem
considers an alternative definition in terms of “empty,”, “cons,” and “fold”. In Caml, “empty” is
[], “cons” is :: (and is written infix), and “fold” is List.fold left. More formally, consider the
simply-typed λ-calculus with these syntactic extensions:

e ::= . . . | empty | cons(e, e) | fold(e, e, e)
v ::= . . . | empty | cons(v, v)
τ ::= . . . | τ list

(a) Extend our small-step operational semantics appropriately. Informally:

• cons and fold should have call-by-value left-to-right behavior.
• fold works like Caml’s List.fold left, which the Caml manual explains like this:
List.fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn
Note that fold assumes the first argument evaluates to a (curried) two-argument function and
the third argument evaluates to a list.

Hints:

• You need 5 “boring inductive rules”.
• You need 2 “interesting rules”, one of which should (somewhat cleverly) use fold in the

expression it produces.
• If e3 evaluates to the empty-list, then fold(e1, e2, e3) should eventually evaluate to the result

of evaluating e2.

(b) Describe all the new “stuck states” that our extensions introduce.

(c) Give typing rules appropriate for our extensions. As in ML, the empty-list can have any list
type and a list must have all its elements have the same type. Unlike ML, we do not have
polymorphism, which is why empty, cons, and fold must be “built-into” our language, rather than
defined in a library.

(d) Prove the cases of the Preservation, Progress, and Substitution Lemmas relevant to our extensions.

(e) Now forget about our formal stuff and just program with [], ::, and List.fold left in Caml:

i. Write length (to compute the length of a list) using only List.fold left and addition.
ii. Write reverse (to reverse a list) using only [], ::, and List.fold left.
iii. Write map (which has the same behavior as List.map) using only [], ::, List.fold left,

and reverse.
iv. Write is empty (to return true if and only if its argument is empty) using only List.fold left

and booleans.
v. Write head (which returns Some v when passed a non-empty list starting with v and None

when passed an empty list) using only List.fold left and operations on options.
vi. Write tail (which returns Some t when passed a non-empty list with tail t and None when

passed an empty list) using only List.fold left, [], ::, reverse, and operations on options.

Note: Only tail took your instructor more than 80 characters. tail is a bit tricky.
Note: In λ-calculus, let f x = e x and let f = e are equivalent if e terminates and has no
side-effects. But in ML, if you want f to have a polymorphic type (as all the functions for this
problem do), you cannot write let f = e when e is a function application. The reason has to do
with mutation; we’ll cover it in a few weeks.
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2. (Implementation) The code provided to you defines abstract syntax and a parser for the simply-typed
λ-calculus with booleans, pairs, and rec (instead of fix). To make parsing and type-checking easier,
functions have the concrete form (fn x:t. e). Specfically, they must be surrounded by parentheses,
they must have explicit argument types, and the “:” and “.” must be present.

Similarly, recursive functions have the form (rec f:t x. e). This creates a recursive function of
type t. In e, f is bound to the function and x is bound to the argument.

Conditionals and pairs require parentheses. For getting pair fields, use (e).1 and (e).2.

(a) The file adder contains an incomplete test file. Complete the file so that running this program
produces ((true,true),true). Hints:

• We are treating pairs of the form ((b1, b2), b3) as 3-bit binary numbers where true is 1. After
you provide the missing function, the provided code adds the two 3-bit numbers at the bottom
of the file.

• The function you add takes 3 bits and returns 2 bits. The first bit is the “result bit” of adding
3 bits (mod 2) and the second bit is the “carry bit” of adding 3 bits.

• Sample solution is 4 rather dense lines, but an arguably simpler solution is about 15 lines.

(b) Implement the type-checker for this language by changing Main.typecheck. Your type-checker
should raise an exception if the expression does not type-check (or if it encounters the Closure
variant, which is explained on the next page).

(c) Implement a large-step environment-based interpreter by changing Main.interpret. Such an
interpreter is explained on the next page. Your interpreter should raise an exception if it gets
stuck. (But expressions that type-check should not get stuck). You will see that the code for
implementing environments is provided to you. For this problem assume the value PartC is the
first argument to interpret.

(d) Change your interpreter so that when it is passed PartD it uses separate Caml threads (read
about threads in the on-line manual) to evaluate the two subexpressions of a pair. Specifically, to
evaluate (e1, e2):

• Create an exp option ref that a spawned thread can mutate to store the result of its
computation. Note this reference must be local because nexted pair-expressions will lead to
multiple thread-creations.

• Create a thread to evaluate e2.
• In the parent thread, evaluate e1, then enter a loop (i.e, a recursive function) that checks

whether the other thread has stored its answer into the exp option ref yet.1 This is called
“busy-waiting”.

(e) Change your interpreter so that when it is passed PartE it uses threads as in part (d), but it uses
the Condition and Mutex libraries to avoid busy-waiting. Specifically:

• The parent and child threads should shair a mutex and a condition variable.
• The child should acquire the lock, signal the condition variable, and release the lock.
• The parent should acquire the lock before entering a “waiting loop” and wait on the condition

variable in the loop.

(f) Change your interpreter so that when it is passed partF it uses threads as in part (d), but instead
of looping, the parent thread uses Thread.join after evaluating e1 to wait for the child thread
to complete its work.

1On Cygwin but not Linux, your instructor found it necessary to put a call to Thread.yield() in the loop.
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An environment-based interpreter does not use substitution. Instead, the program state includes an
environment, which maps variables to values. To implement lexical scope correctly, functions are not
values—they evaluate to closures (written <e, E> below). Here is a formal large-step semantics using
this approach (omitting booleans, conditionals, pairs, and rec). Pay particular attention to the rule for
function application—we evaluate function bodies using the environment in its closure!

e ::= c | x | λx. e | e e | rec f x.e | <λx. e, E>
E ::= · | E, x 7→ v
v ::= c | <λx. e, E>

E; v ⇓ v E;x ⇓ E(x) E;λx. e ⇓ <λx. e, E>

E; e1 ⇓ <λx. e3, E1> E; e2 ⇓ v2 E1, x 7→ v2; e3 ⇓ v

E; e1 e2 ⇓ v

As usual with large-step semantics, evaluation order is not fully specified. (We’re CBV, but your
implementation can be left-to-right or right-to-left.)

Formalizing rec without substitution is interesting. What we want is E; rec f x.e ⇓ <λx. e, E′> where
E′ = E, f 7→ <λx. e, E′>, which has a circularity. In math, we would take a fix-point over an
environment-generator. In O’Caml, we need to either represent our environment with a recursive
function or with a circular data structure (which requires mutation). The code given to you shows
both approaches. (Note the first approach just pushes the problem off to O’Caml’s implementors,
making them be the ones who build a circular data structure.)

You can probably do the homework without understanding most of the previous paragraph.
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3. Extra Credit

(a) Read the proof in the textbook that all simply-typed λ-calculus programs terminate. Extend the
proof for the language we defined in problem 1 (i.e, with empty, cons, and fold).

(b) Extend the interpreter from problem 2 to support the “choice” operator e1 ‖ e2 (which the parser
and abstract syntax support if you uncomment the obvious lines), which has this behavior:

• If e1 and e2 terminate, then e1 ‖ e2 can behave like e1 or like e2.
• If e1 terminates and e2 does not, then e1 ‖ e2 must behave like e1.
• If e2 terminates and e1 does not, then e1 ‖ e2 must behave like e2.
• If neither e1 nor e2 terminates, then e1 ‖ e2 must not terminate.

Your solution should be elegant and use “very little if any” mutation. (If you use threads, you can
use mutation for thread communication. If you don’t use threads, don’t use mutation.) Notice
that there may be an arbitrary number of “nested” choice operators and they may not be “directly
nested”.
Your instructor didn’t do this problem but can imagine two approaches (you can do both for
double extra-credit):

i. Spawn threads for e1 and e2 and when one terminates, kill the other and any threads it may
have spawned.

ii. Use one thread, but after an expression inside a choice expands a “fix” expression, conceptu-
ally “stop” and switch to evaluating the other half of the choice. You can do this by rewriting
e1 ‖ e2 as e2 ‖ e′

1, where e′
1 is just e1 unless it contains nested uses of ‖.

(c) We extend the simply-typed λ-calculus-with-pairs with “fix2”, which allows for two mutually
recursive functions:

e ::= . . . | fix2(e, e)
v ::= (no change)
τ ::= (no change)

i. Extend our small-step operational semantics appropriately. Informally:
• fix2 should have call-by-value left-to-right behavior.
• For fix2(λpair1. e1, λpair2. e2), we create a pair of expressions out of the function bodies,

with “the entire fix2” in place of pair1 and pair2. So to make a recursive call in e1 or e2,
we get a field from the pair we are passed.

ii. Give a typing rule for fix2. Hint: It’s a bit messy, requring use of a τ1, τ2, τ3, and τ4.
iii. Show that any program you can write with fix you can write with fix2. To be precise, give a

semantic rule that transforms an expression using fix into one using fix2. Hint: You will need
to use substitution.

iv. Show that any program you can write with fix2 you can write with fix. To be precise, give a
semantic rule that transforms an expression using fix2 into one using fix. Hint: You can use
implicit renaming or substitution. The simplicity of the solution suggests that fix2 as defined
here is a fairly dumb thing to add to a language.
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What to turn in:

• Caml source code for 1e in a file called firstname-lastname--hw3.ml.

• Caml source code for problem 2 in a file called firstname-lastname--main.ml.

• Hard-copy (written or typed) answers to all other problems.

• If you do the Caml extra credit, do it in another file appropriately named.

Email your source code to Erika. Hard copy solutions should be put in Erika’s grad student mailbox, in the
envelope outside her office, or given to her directly.
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