4 N

CSE 505: Concepts of Programming
Languages

Dan Grossman
Fall 2003
Lecture 6— Lambda Calculus

o /

Dan Grossman CSEb505 Fall 2003, Lecture 6 1

/VVhere we are

e Done: Modeling mutation and local control-flow
e Proving operational equivalence (hard!)
e Now: Didn't IMP leave some things out?

Time for a new model... (Pierce, chapter 5)

o

Dan Grossman CSEb505 Fall 2003, Lecture 6

/VV hat we forgot \

IMP is missing lots of things (threads, I/O, exceptions,

strings, ...), but here are two really basic and interesting

ones:
e Scope (all global variables, no functions or objects)
e Data structures (only integers, no records or pairs)

As we'll see, higher-order functions do both! (E.g., my
heap implementation in hwl used functions like a list)

o /

Dan Grossman CSEb505 Fall 2003, Lecture 6 3

/Adding data structures

~

Extending IMP with data structures isn't too hard:

e = clx|et+e|lexe]|(e,e)]|el]|e?2
v = c|(v,v)
H := .|H,z— v

Hieilvi Hiexlv2 Hiel(vi,v2) H;iel(vi,v2)

H;(ei,e2){(v1,v2) H:e.1l v, H:e.2|lvs

Note: We allow pairs of values, not just pairs of integers.

Note: We now have stuck programs (e.g., ¢.1) — what
Qoum C do? Scheme? ML? Java?

/

Dan Grossman CSEb505 Fall 2003, Lecture 6

4

/VVhat about functions

But adding functions (or objects) does not work well:

ex=...|funx->s5 su=...|e(e)

H:;fun x -> s{fun o -> s

H:eq{lfun x -> s H:es v

H ;ei(ex) » H; x:=wv;s

NO: Consider (fun « -> s)(y := x);ans := x.

Scope matters; variable name doesn't.

-

Dan Grossman CSEb505 Fall 2003, Lecture 6

/Another try

~

H:ei{fun x -> s H:es v y “fresh”

H ;ei(ex) > H;y:=x;x:=v385¢:=1y

e “fresh” is sloppy

e not a good match to how functions are implemented

(round-peg, square-hole)
e yuck

e NO: wrong model for most functional and OO

-

languages (okay for C, | think)

/

Dan Grossman CSEb505 Fall 2003, Lecture 6

/The wrong model

~

H:eq{fun x -> s H:es v y “fresh”

H ;ei(ex) > H;y:=x;x:=v385¢:= 1y

fii=funx > fo:=fun z > y:=x + z;

f1(2);

r:=3

f2(4)
let f1 = fun x => (fun z -> x + z) in
let £2 = f1 2 in
let x = 3 in

Dan Grossman CSEb505 Fall 2003, Lecture 6

/Punch line \

The way higher-order functions and objects work is not

modeled by mutable global variables. So let’s build a new
model that focuses on this essential concept.

(Or just borrow a model from Alonzo Church.)

And drop mutation, conditionals, integers (!), and loops (!)

The Lambda Calculus:

e = Ar.e|xz|ee

VO i= . e

You apply a function by substituting the argument for the

wund variable. /

Dan Grossman CSEb505 Fall 2003, Lecture 6 8

/Example Substitutions \

e = Ar.e|x|ee

v o= Ax.e
Substitution is the key operation we were missing:
(Az. z)(Ay. y) — (Ay. y)
(Ax. Ay. y) (Az. 2) — (Ay. y Az. 2)
(Ax. z) Ax. x) — (Ax. ¢) (Ax. = x)

After substitution, the bound variable is gone, so its
“name” was irrelevant. (Good!)

\There are irreducible expressions (x e). (maybe a probleny

Dan Grossman CSEb505 Fall 2003, Lecture 6 9

/A Programming Language \

Given substitution (eq[e2/x]), we can give a semantics:

/ /
61—>€1 €2 — €,

(Az.e) v — e[v/x] e1e2 —ejex vey—ve,

A small-step, call-by-value (CBV), left-to-right semantics

Gets stuck exactly when there's a free variable at top-level
(Won't cheat because scope is what we're interested in)

This is the “heart” of functional languages like O'Caml
(but “real” implementations don't substitute—see hw3)

- /

Dan Grossman CSEb505 Fall 2003, Lecture 6 10

/VVhere are we \

e Motivation for a new model (done)

e CBV lambda calculus using substitution (done)
e Notes on concrete syntax
e Simple Lambda encodings
e Other reduction strategies

e Defining substitution

o /

Dan Grossman CSE505 Fall 2003, Lecture 6 11

/Syntax Revisited \

We resolve concrete-syntax ambiguities as follows:

1. Ax. ey ez is (Ax. e1 e3), not (Ax. e1) eo
2. €1 €2 €3 IS (61 62) €3, not ey (62 63)

(Convince yourself application is not associative)

More generally:

1. Function bodies extend to an unmatched right
parenthesis (e.g., (Axz. y(Az. z)w)q)

2. Application associates to the left. E.g., e1 e e3 e4 is
(((e1 e2) es) es).
\These strange-at-first rules are convenient (see O'Caml) /

Dan Grossman CSE505 Fall 2003, Lecture 6 12

/Simple encodings \

It's fairly crazy we left out constants, conditionals,

primitives, and data structures.

In fact, we're Turing complete and can encode whatever

we need. Motivation for encodings:
e It's fun and mind-expanding

e |t shows we aren’t oversimplifying the model
(“numbers are syntactic sugar”)

e It can show languages are too expressive (e.g.,
unlimited C++ template instantiation)

- /

Dan Grossman CSEb505 Fall 2003, Lecture 6 13

/Encoding booleans \

There are two booleans and one conditional expression.

The conditional takes 3 arguments (via currying). If the
first i1s one boolean it evaluates to the second. If it's the

other boolean it evaluates to the third.

Any 3 expressions meeting this specification (of “the
boolean ADT") is an encoding of booleans.

“true” Ax. A\y. x

“false” Ax. A\y. y
G Ab. AL ANf. Dbt S

ths is just one encoding. E.g.: “if" “true” vy vy —* vy

Dan Grossman CSE505 Fall 2003, Lecture 6 14

/Evaluation Order Matters \

Careful: With CBV we need to “thunk”...
‘it "true” (A) (Ax. ¢) (Ax. = x))

diverges, but

(“if” “true” (Az. Ax. &) (Az. (Ax. z) (Ax. £ x))))

doesn't.

o /

Dan Grossman CSEb505 Fall 2003, Lecture 6 15

/Encoding pairs \

The “pair ADT" has a constructor taking two arguments

and two selectors. The first selector returns the first
argument passed to the constructor and the second
selector returns the second.

‘mkpair’ Ax. A\y. A\z. z x y
“fst” Ap. p(Ax. Ay. x)
“snd” Ap. p(Ax. Ay. y)

Example:

“snd” (“fst” (“mkpair” (“mkpair’ v, v2) v3)) —=* v

o /

Dan Grossman CSEb505 Fall 2003, Lecture 6 16

M

ore encodings (see the text) \

-

e “Church numerals”: A natural number is O or the

e “lists’: in an untyped world, booleans and pairs are

successor of a natural (and maybe a test for equality)
Given the encoding, can define math operations (plus,
exponentiation, ...)

enough for lists, one approach:

— Empty list is “mkpair” “false” “false”

— Non-empty list is “mkpair” “true” (“mkpair’ h t)
(Not too far from how lists are implemented.)
“recursion” : useful looping by applying a function to

itself and an argument (too intricate for lecture) /

Dan Grossman CSEb505 Fall 2003, Lecture 6 17

/Red uction “Strategies” \

Suppose we allowed any substitution to take place in any

order:
/
/
(Ax. e) e/ — e[e’/x] e1 ez — €] ez
/ /
ex — €5 e — e
e1 ez — e e, Ax. e — \x. e’

Programming languages don't typically do this, but it has
uses. . .

o /

Dan Grossman CSEb505 Fall 2003, Lecture 6 18

/Full Reduction \

e Prove programs equivalent algebraically (also use

Ax. e — A\y. e’ where €’ is e with free o replaced
with ¥y and Ax. e * — e where x not free in e)

e Optimize/pessimize/partially-evaluate (even avoid an
infinite loop)

What order you reduce is a “strategy’; equivalence is
undecidable

Non-obvious fact (“Church-Rosser”): In this pure calculus,
If e =™ e; and e —™ eo, then there exists an es such
that ey —™* e3 and e —™ e3.

Q\Io strategy gets painted into a corner” /

Dan Grossman CSEb505 Fall 2003, Lecture 6 19

/Some other common strategies \
We have seen “full” and left-to-right CBV.

(O'Caml is unspecified order, but actually right-to-left.)

Claim: Without assignment, 1/O, exceptions, ... you
cannot distinguish evaluation order.

Another option is call-by-name (CBN):

/

Ax. e) e — ele/x e1 ea — € eq
1

Even “smaller’” than CBV!

Diverges strictly less often than CBV, e.g., (Ay. Az. 2)e.

@n be faster (fewer steps), but not usually (reuse args)./

Dan Grossman CSEb505 Fall 2003, Lecture 6 20

/I\/Iore on evaluation order \

In “purely functional” code, evaluation order “only”

matters for performance and termination.

Example: Imagine CBV for conditionals!
let rec £f n = if n=0 then 1 else n*x(f (n-1))

Call-by-need or “lazy evaluation”: “Best of both worlds”?
(E.g.: Haskell) Evaluate the argument the first time it's
used. Memoize the result. (Useful idiom for coders too.)

Can be formalized, but it's not pretty.

For purely functional code, total equivalence with CBN
and same asymptotic time as CBV. (Note: asymptotic!)

Qard to reason about with effects. /

Dan Grossman CSE505 Fall 2003, Lecture 6 21

/Formalism not done yet \

For rest of course, assume CBV:

/ /
€1 — €4 €2 — €9

(Ax.e) v — e[v/xz] e1ex— €] ex vex— ve,

Need to define substitution—shockingly subtle.

Attempt 1:
Yy #x eile/x] = e}
zle/z] =e yle/z] =y (Ay. e1)[e/z] = Ay. e}
e1le/x] = e} exle/x] = e5

(e1 e2)[e/x] = e} e5

- /

Dan Grossman CSE505 Fall 2003, Lecture 6 22

/Getting substitution right \

Attempt 2:

eile/x] = €] y#£x
(Ay. e1)[e/x] = Ay. €] (Ax. e1)[e/x] = Ax. ey

What if e is y or Az. y or, in general y is free in e? This
mistake 1s called capture.

It doesn’t happen under CBV/CBN if our source program
has no free variables.

Can happen under full reduction.

o /

Dan Grossman CSEb505 Fall 2003, Lecture 6 23

/Another Try \

Attempt 3 (define F'V (e) inductively on e):

eile/x] = e} Yy F£x y & FV(e)
(Ay. e1)le/z] = Ay. e;

(Ax. e1)le/x] = Ax. e1
A partial definition because of the syntactic accident that y
was used as a binder (should not be visible).

So we allow implicit systematic renaming (of a binding and all
its bound occurrences). So the top rule can always apply.

In general, we never distinguish terms that differ only in the
wmes of variables. (A key language-design principle!) /

Dan Grossman CSE505 Fall 2003, Lecture 6 24

/Summary and some jargon \

e If everything is a function, every step is an application:
(Ax. e)e’ — ele’/x]) (called B-reduction)

e Substitution avoids capture via implicit renaming

(called a-conversion)

e With full reduction, Ax. e x — e makes sense if
x & FV(e) (called n-reduction), for CBV it's

“unthunking”

Most languages use CBV application, some use

call-by-need.

Our Turing-complete language models functions and

@codes everything else. /

Dan Grossman CSEb505 Fall 2003, Lecture 6 25

/VVhere we're going \

You should now have a better understanding of

higher-order functions, functional languages, and
evaluation order.

Which will make you a better programmer in all languages.

But the untyped lambda-calculus is like an “assembly
language”’ where everything looks the same: closed

programs always do something and everything is a function
(cf. bits).

Next: We'll distinguish constants from functions and use a

type system to prevent run-time errors.

o /

Dan Grossman CSEb505 Fall 2003, Lecture 6 26

