
'

&

$

%

CSE 505: Concepts of Programming
Languages

Dan Grossman

Fall 2003

Lecture 17

Bounded Polymorphism and Classless OOP

Dan Grossman CSE505 Fall 2003, Lecture 17 1

'

&

$

%

You have grading to do
I am going to distribute course evaluation forms so you may rate the

quality of this course. Your participation is voluntary, and you may

omit specific items if you wish. To ensure confidentiality, do not

write your name of the forms. There is a possibility your handwriting

on the yellow written comment sheet will be recognizable; however, I

will not see the results of this evaluation until after the quarter is

over and you have received your grades. Please be sure to use a No.

2 PENCIL ONLY on the scannable form.

I have chosen (name) to distribute and collect the forms. When you

are finished, he/she will collect the forms, put them into an evelope

and mail them to the Office of Educational Assessment. If there are

no questions, I will leave the room and not return until all the

questionnaires have been finished and collected. Thank you for your

participation.

I’ll come back at 10:45.

Dan Grossman CSE505 Fall 2003, Lecture 17 2

'

&

$

%

Revenge of Type Variables

Sorted lists in ML (partial):

make : (’a -> ’a -> int) -> ’a slist

cons : ’a slist -> ’a -> ’a slist

find : ’a slist -> (’a -> bool) -> ’a option

Getting by with OO subtyping (assuming null has any type):

interface Cmp { Int f(Object,Object); }

interface Pred { Bool g(Object); }

class SList {

constructor (Cmp x) {...}

Slist cons(Object x) {...}

Object find(Pred x) {...}

}

Dan Grossman CSE505 Fall 2003, Lecture 17 3

'

&

$

%

Wanting Type Variables

Will downcast (potential run-time exception) the arguments to

f, the argument to g, and the result of find.

We are not enforcing list-element type-equality.

OO-style subtyping is no replacement for parametric

polymorphism; we can have both:

interface ’a Cmp { Int f(’a,’a); } // Cmp not a type

interface ’a Pred { Bool g(’a); } // Pred not a type

class ’a SList { // SList not a type (Int SList is)

constructor (’a Cmp x) {...}

’a Slist cons(’a x) {...}

’a find(’a Pred x) {...}

}

Dan Grossman CSE505 Fall 2003, Lecture 17 4

'

&

$

%

Same Old Story

• Interface and class declarations are parameterized ;

they produce types.

• The constructor is polymorphic (for all T, given a T

Cmp, it makes a a T SList).

• If o has type T SList, its cons method takes a T and

returns a T SList.

No more downcasts; the best of both worlds.

Dan Grossman CSE505 Fall 2003, Lecture 17 5

'

&

$

%

Complications
“Interesting” interaction with overloading and multimethods

class B {

unit f(Int C x) {...}

unit f(String C x) {...}

}

class ’a C { unit g(B x) { x.f(self); } }

• For T C where T is neither Int nor String, can have no

match found.

• Cannot resolve static overloading at compile-time without

code duplication.

• To resolve overloading or multimethods at run-time, need

run-time type information including the instantiation T.

Alternately, could just reject the call as unresolvable.

Dan Grossman CSE505 Fall 2003, Lecture 17 6

'

&

$

%

Wanting bounds
Even without overloading or multimethods, there are

compelling reasons to bound the instantiation of type variables.

Simple example: Use at supertype without losing that it’s a

subtype

interface I { unit print(); }

class (’a < I) Logger { // must apply to subtype of I

’a item;

’a get_it() { syslog(item.print()); item }

}

Without polymorphism or downcasting, client could only use

get_it result for printing.

Without bound or downcasting, Logger could not print.

Dan Grossman CSE505 Fall 2003, Lecture 17 7

'

&

$

%

Fancy Example

With forethought and structural (non-named) subtyping,

bounds can avoid some subtyping limitations.

(Example lifted from “A Theory of Objects” Abadi/Cardelli)

interface Omnivore { unit eat(Food); }

interface Herbivore { unit eat(Veg); } // Veg <= Food

Allowing Herbivore≤Omnivore could make a vegetarian eat

meat (unsound)! But this works:

interface (’a < Food) Omnivore { unit eat(’a); }

interface (’a < Veg) Herbivore { unit eat(’a); }

If T Herbivore is legal, then T Omnivore is legal and

(T Herbivore)≤(T Omnivore)!

Dan Grossman CSE505 Fall 2003, Lecture 17 8

'

&

$

%

Bounded Polymorphism

This “bounded polymorphism” is useful in any language

with universal types and subtyping. Instead of ∀α.τ and

Λα.e, we have ∀α < τ ′.τ and Λα < τ ′.e:

• In e you can subsume from α to τ ′

• e1[τ1] typechecks only if τ1 “satisfies the bound” in

the type of e1.

One meta-theory drawback: Contravariant bounds are

sound, but make subtyping undecidable. Requiring

invariant bounds (more restrictive) regains decidability.

Dan Grossman CSE505 Fall 2003, Lecture 17 9

'

&

$

%

Classless OOP

OOP gave us code-reuse via inheritance and extensibility

via late-binding.

But it also gave us a clunky, heavyweight class and

named-type mechanism we had to use to get it.

Can we throw out classes and still get OOP? Yes.

Can it have a type system that prevents “no match found”

and “no best match” errors? Yes, but we won’t get there.

We will make up syntax as we go along!

This is mind-opening/bending stuff if you’ve never seen it.

Dan Grossman CSE505 Fall 2003, Lecture 17 10

'

&

$

%

Make objects directly

Everything is an object. You can make objects directly:

let p = [

field x = 7;

field y = 9;

right_quad(){ x.gt(0) && y.gt(0) } // cf. 0.lte(y)

]

p is now an object in scope; can invoke its methods (and assign

fields (see hw – that’s just method invocation)

No classes: Constructors are easy to encode

let make_p = [

doit(x0,y0) { [field x=x0; field y=y0;...] }]

Dan Grossman CSE505 Fall 2003, Lecture 17 11

'

&

$

%

Inheritance and Override
Building objects from scratch won’t get us late-binding and

code reuse. Here’s the trick:

• clone method produces a (shallow) copy of an object.

• method “slots” can be mutable

let o1 = [// still have late-binding

odd(x) {if x.eq(0) then false else self.even(x-1)}

even(x) {if x.eq(0) then true else self.odd(x-1)}]

let o2 = o1.clone()

o2.even(x) := (x.mod(2)).eq(0)

Language doesn’t grow (just methods and mutable “slots”)

Can use for constructors too (clone and assign fields)

Dan Grossman CSE505 Fall 2003, Lecture 17 12

'

&

$

%

Extension

But that trick doesn’t work to add slots to an object, a

common use of subclassing.

Having something like “extend e1 (x=e2)” that mutates

e1 to have a new slot is problematic semantically (what if

e1 has a slot named x) and for efficiency (may not be

room where e1 is allocated)

Instead, we can build a new object with a special parent

slot: [parent=e1; x=e2]

parent is very special because definition of method-lookup

(the issue in OO) depends on it (else this isn’t inheritance)

Dan Grossman CSE505 Fall 2003, Lecture 17 13

'

&

$

%

Method Lookup

To find the m method of o:

• Look for a slot named m

• If not found, look in object held in parent slot

But we still have late-binding: for method in parent slot,

we still have self refer to the original o.

Two inequivalent ways to define parent=e1:

• Delegation: parent refers to result of e1

• Embedding: parent refers to result of e1.clone()

Mutation of result of e1 (or its parent or grandparent or

...) exposes the difference. We’ll assume delegation.

Dan Grossman CSE505 Fall 2003, Lecture 17 14

'

&

$

%

Oh so flexible

Delegation is way more flexible (and simple!) (and dangerous!)

than class-based OO: The object being delegated to is usually

used like a class, but its slots may be mutable.

• Assigning to a slot in a delegated object changes every

object that delegates to it (transitively)

– Clever change-propagation but as dangerous as globals

(and more subtle?)

• Assigning to a parent slot is “dynamic inheritance”

(changes where slots are inherited from)

Classes restrict what you can do and how you think (never

thinking of clever run-time modifications of inheritance)

Dan Grossman CSE505 Fall 2003, Lecture 17 15

'

&

$

%

Rarely what you want

We have the essence of OOP in a tiny language with more

flexibility than we usually want.

Avoid it via careful coding idioms:

• Create trait/abstract objects: Just immutable methods (cf.

abstract classes)

• Extend with prototype/template objects: Add mutable

fields but don’t mutate them (cf. classes)

• Clone prototypes to create concrete/normal objects (cf.

constructors)

Traits can extend other traits and prototypes other prototypes

(cf. subclasses)

Dan Grossman CSE505 Fall 2003, Lecture 17 16

'

&

$

%

Coming full circle

Without separating first two roles, objects don’t share

method slots (wastes space), but immutability avoids

danger.

Late-binding still makes method-override work correctly.

This idiom is so important, it’s worth having a type system

that enforces it.

For example, a template object cannot have its members

accessed (except clone).

We end up getting close to classes, but from first principles

and still allowing the full flexibility when you want it.

And we still have just objects, roles, and types.

Dan Grossman CSE505 Fall 2003, Lecture 17 17

'

&

$

%

A word on types

Untyped languages work (the OO of Scheme) – may get a

“no match found” exception at run-time. Very flexible.

But we can develop type systems that restrict the language

and prevent getting stuck without developing a class

system.

Can base types on “derived from the same object,” which

can form the basis for multimethods.

Summary: Pure classless OO a liberating way to think,

especially if you learn workarounds in more restrictive

languages.

Dan Grossman CSE505 Fall 2003, Lecture 17 18

