
'

&

$

%

CSE 505: Concepts of Programming
Languages

Dan Grossman

Fall 2003

Lecture 14/15

Object-Oriented Programming

Dan Grossman CSE505 Fall 2003, Lecture 14/15 1



'

&

$

%

Don’t Believe the Hype

OOP provides concise ways to build extensible software and

exploit a sometimes-useful analogy between interaction of

objects in physical systems and interaction of software parts.

It also raises tricky semantic and style issues that require careful

PL investigation. (Good thing we’re doing it near the end!)

Personally, I am skeptical about:

• The coding factor (X lines/day of accessor methods!)

• The Barnes&Noble factor (certified insane in X days!)

• The intro factor (by week X you can write your own class!)

If it takes an advanced degree to understand objects, I’ve got

the right audience!

Dan Grossman CSE505 Fall 2003, Lecture 14/15 2



'

&

$

%

So what is OOP?
It seems to look like this. . . That’s a lot; what’s the essence?

class Point1 extends Object {

int x;

int get_x() { x }

unit set_x(int y) { self.x = y }

int distance(Point1 p) { p.get_x() - self.get_x() }

constructor() { x = 0; }

}

class Point2 extends Point1 {

int y;

int get_y() { y }

int get_x() { 34+super.get_x(); }

constructor() { super(); y=0; }

}

Dan Grossman CSE505 Fall 2003, Lecture 14/15 3



'

&

$

%

OOP can mean many things

• An ADT (private fields)

• Subtyping

• Inheritance, method/field extension, method override

• Implicit this/self

• Dynamic dispatch

• All the above (plus constructor(s)) with 1 class

declaration

Let’s consider how OO each of these is. . .

Side question: Is “good design” many combinable

constructs or one “do it all” construct?

Dan Grossman CSE505 Fall 2003, Lecture 14/15 4



'

&

$

%

OO as ADT-focused
Object/class members (fields, methods, constructors) often

have visibilities and “more private” is sort of “more abstract”

What code can invoke a method/access a field? Other methods

in same object, other methods in same class, a subclass, within

some other boundary (e.g., a package), any code, . . .

With just classes, the only other way to hide a member is

upcasting. With interfaces (which are more like record types),

we can hide members more selectively:

interface I { int distance(Point1 p); }

class Point1 { ... I f() { return self; } ... }

Last lecture we saw objects are a bad match for “strong binary

methods” (we’ll come back to this)

Dan Grossman CSE505 Fall 2003, Lecture 14/15 5



'

&

$

%

Records with private fields

Let’s assume all fields are visible only to self object. Then

objects are just a record of methods with private state.

So far, this is no need for a fancy OO language:

let point1_constructor () =

let x = ref 0 in

let rec self =

{.get_x = fun () -> !x;

.set_x = fun y -> x := y;

.distance = fun p -> p.get_x() - self.get_x()

} in self

But there’s more to it (haven’t considered inheritance yet)

Dan Grossman CSE505 Fall 2003, Lecture 14/15 6



'

&

$

%

Subtyping

Most class-based OO languages “confuse” classes and types:

• If C is a class, then C is a type.

• If C extends D (via declaration), then C ≤ D.

• Subtyping is (only) the reflexive, transitive closure of this.

Is this novel? If C adds members, that’s width subtyping.

This is “by name” subtyping. If classes C1 and C2 are

incomparable in the class hierarchy they are incomparable

types, even if they have the same members.

We will definitely revisit this “subclassing is subtyping”

assumption! (For now, it restricts subtyping and subclassing!)

Dan Grossman CSE505 Fall 2003, Lecture 14/15 7



'

&

$

%

Subtyping, continued

If C extends D and overrides a method of D, what

restrictions should we have?

• Argument types contravariant (assume less about

arguments)

• Result type covariant (provide more about result)

Many “real” languages are even more restrictive.

Some bend over backward to be more flexible. (Don’t!)

It’s good we studied this in a simpler setting.

Dan Grossman CSE505 Fall 2003, Lecture 14/15 8



'

&

$

%

Inheritance and Override
A subclass inherits the fields and methods of its superclass. It

can override some methods and have special “super” (a.k.a.

resend) calls.

This isn’t hard in ML either, if everything is visible:

let point1_constructor () =

let x = ref 0 in

let rec self =

{.x = ref 0;

.get_x = fun () -> !self.x;

.set_x = fun y -> self.x := y;

.distance = fun p -> p.get_x() - self.get_x()

} in self

continued...

Dan Grossman CSE505 Fall 2003, Lecture 14/15 9



'

&

$

%

Continued...

let point2_constructor () =

let r = point1_constructor () in

let rec self =

{.get_x = fun () -> 34 + r.get_x();

.distance = r.distance;

.y = ref 0;

... } in self

Fields visible only in subclasses requires multiple

abstractions (doable).

Also have to change point2 code when point1 changes, but

often true in OO too (“fragile base class” issues).

Dan Grossman CSE505 Fall 2003, Lecture 14/15 10



'

&

$

%

Then what is it?

I claim class-based objects are poor (maybe okay) ADTs,

same old subtyping, and a little syntactic sugar for

extension and override.

So what is that makes OO different in an intellectually

interesting way?

Answer: The “late” binding of self and the dynamic

dispatch that results.

The difference between point2_constructor() and an

object of class Point2 is in the behavior of distance.

Dan Grossman CSE505 Fall 2003, Lecture 14/15 11



'

&

$

%

More on late binding
Late-binding, dynamic dispatch, and open recursion are all

closely related ideas. The simplest example I know:

Functional (even still O(n)) vs. OO (even now O(1)):

let c1() = let rec r = {

even i = if i > 0 then r.odd (i-1) else true;

odd i = if i > 0 then r.even (i-1) else false} in r

let c2() = let r1 = c1() in

let rec r = {even = r1.even; odd i = i % 2 == 1} in r

class C1 {

int even(int i) {if i>0 then odd(i-1) else true;}

int odd(int i) {if i>0 then even(i-1) else false;}}

class C2 extends C1 {

int odd(int i) {i % 2 == 1} }

Dan Grossman CSE505 Fall 2003, Lecture 14/15 12



'

&

$

%

Political Spin

“Call your congresspeople. Tell them C2 should have the

right to change even by overriding odd. It’s a question of

code reuse and you deserve better subclasses.”

“Call your congresspeople. Tell them C1.even shouldn’t

break whenever C2 decides to write a bad odd. You

deserve quality code, regardless of subclasses.”

Meanwhile, public television has a “boring” documentary

about quiet behind-the-scenes work to understand the

approaches and how the shortcomings of each can be

compensated.

More about OO to come. . .

Dan Grossman CSE505 Fall 2003, Lecture 14/15 13



'

&

$

%

Where We’re Going

Now we know overriding and dynamic dispatch is the

interesting part of the expression language. Now:

• How exactly do we define method dispatch?

• How do we use overriding for extensible software?

• Revisiting “subtyping is subclassing”

– Why contra/covariance is useful

– Interfaces or object types for more subtyping

– Subclassing not subtyping for more code reuse

Dan Grossman CSE505 Fall 2003, Lecture 14/15 14



'

&

$

%

Defining Dispatch

We want correct definitions, not super-efficient compilation

techniques.

Methods take “self” as an argument. (Compile down to

functions taking an extra argument.) So just need self to

refer to right thing.

Approach 1: Each object has a “code pointer” for each

method. For object returned by new C() where C extends

D, use code pointers for D (inductive definition!) but:

• If C overrides f replace code pointer for f

• If C adds f, then add code pointer for f

Dan Grossman CSE505 Fall 2003, Lecture 14/15 15



'

&

$

%

Dispatch continued

Approach 2: Each object has a “type tag”. Object

returned by new C() has tag C. Program state also has a

“class table” mapping tags and method-names to code.

For dispatch, look up (tag,name) in table.

Approaches are equivalent, model dynamic dispatch

correctly, and are routinely formalized in PL papers.

First approach is “more eager” and consumes more space.

Real implementations get best of both worlds with just a

little more complication.

Dan Grossman CSE505 Fall 2003, Lecture 14/15 16



'

&

$

%

Overriding and Hierarchy Design

Subclass writer decides what to override to modify behavior.

(Style: Modification should be specialization, but language

doesn’t check that.)

Superclass writer often has ideas on what will be overridden.

Leads to abstract methods (must override) and abstract classes:

• An abstract class has > 0 abstract methods

• Overriding an abstract method makes it non-abstract

• Cannot call constructor of an abstract class

Adds no expressiveness (superclass could implement method to

raise an exception), but uses static checking to enforce an

idiom and saves you a handful of keystrokes.

Dan Grossman CSE505 Fall 2003, Lecture 14/15 17



'

&

$

%

Overriding for Extensibility

A PL example:

class Exp {

abstract Value eval(Env);

abstract Typ typecheck(Ctxt);

}

class IntExp extends class Exp {

Int i;

Value eval(Env e) { new IntValue(self.i); }

Typ typecheck(Ctxt c) { new IntTyp(); }

}

Dan Grossman CSE505 Fall 2003, Lecture 14/15 18



'

&

$

%

Example Continued
class AddExp extends class Exp {

Exp e1; Exp e2;

Value eval(Env e) {

new IntValue(e1.eval(e).toInt().add(

e2.eval(e).toInt())); }

Typ typecheck(Ctxt c) {

if(e1.typecheck(c).equals(new IntTyp()) &&

e2.typecheck(c).equals(new IntTyp()))

new IntTyp()

else raise new TypeError() }

}

toInt may raise an exception (Value definition not shown)

“Impure” OO may have a plus primitive (not a method call)

Dan Grossman CSE505 Fall 2003, Lecture 14/15 19



'

&

$

%

Extending the example

If we add a new variant of expression (e.g., MultExp) we need

not change any existing code. In ML-style, we do.

If we add a new operation (e.g., toString) we need to change

Exp and all subclasses.

If we add a new type of value (e.g., Bool):

• ML patterns need new case but _ may avoid it

• Value subclasses need new method (e.g., toBool) but

concrete method in superclass (to raise an exception) may

localize the change.

Extensibility has many dimensions — most require forethought!

(Some work on allowing OO and FP style extension)

Dan Grossman CSE505 Fall 2003, Lecture 14/15 20



'

&

$

%

Yet more example

Now consider actually adding MultExp.

If you have MultExp extend Exp, you will copy typecheck

from AddExp.

If you have MultExp extend AddExp, you don’t copy. The

AddExp implementer was not expecting that. May be

brittle; generally considered bad style.

Best (?) of both worlds by refactoring with an abstract

BinIntExp class implementing typecheck. So we choose

to change AddExp when we add MultExp.

This intermediate class is a fairly heavyweight way to use a

helper function.

Dan Grossman CSE505 Fall 2003, Lecture 14/15 21



'

&

$

%

Revisiting Subclassing is Subtyping

Recall we have been “confusing” classes and types: C is a

class and a type and if C extends D then C is a subtype

of D.

Therefore, if C overrides f, the type of f in C must be a

subtype of the type of f in D. Just like functions,

method-subtyping is contravariant arguments and

covariant results.

If code knows it has a C, it can call f with “more”

arguments and know there are “fewer” results.

Dan Grossman CSE505 Fall 2003, Lecture 14/15 22



'

&

$

%

Subtyping and Dynamic Dispatch

We defined dynamic dispatch in terms of functions taking

self as an argument.

But unlike other arguments, self is covariant! (Else

overriding method couldn’t access new fields/methods.)

This is sound because self must be passed, not another

value with the supertype.

This is the key reason encoding OO in a typed λ-calculus

requires ingenuity, fancy types, and/or run-time cost. (We

won’t even attempt it.)

Dan Grossman CSE505 Fall 2003, Lecture 14/15 23



'

&

$

%

More subtyping

With single-inheritance and the class/type confusion, we

don’t get all the subtyping we want. Example: Taking any

object that has an f method from int to int.

Interfaces help somewhat, but class declarations must still

say they implement an interface.

Object-types bring the flexibility of structural subtyping to

OO. For example, class Exp has a type with two

methods (certain names, certain types) and several

supertypes (fewer methods, methods taking more

restricted arguments, etc.)

With object-types, “subclassing implies subtyping”

Dan Grossman CSE505 Fall 2003, Lecture 14/15 24



'

&

$

%

More subclassing

Breaking one direction of “subclassing = subtyping” allowed

more subtyping (so more code reuse).

Breaking the other direction (“subclassing does not imply

subtyping”) allows more inheritance (so more code reuse).

Simple idea: If C extends D and overrides a method in a way

that makes C ≤ D unsound, then C 6≤ D. This is useful:

class P1 { ... Int get_x(); Int compare(P1); ... }

class P2 extends Point1 { ... Int compare(P2); ... }

Dan Grossman CSE505 Fall 2003, Lecture 14/15 25



'

&

$

%

Where we are

Summary of last 4 slides: Separating types and classes

expands the language, but clarifies the concepts:

• Typing is about interfaces, subtyping about wider

interfaces

• Inheritance is about code-sharing

Combining typing and inheritance restricts both.

Where we are going: multiple inheritance, multiple

dispatch, bounded polymorphism, classless OO languages,

a primitive-calculus.

Dan Grossman CSE505 Fall 2003, Lecture 14/15 26


