
'

&

$

%

CSE 505: Concepts of Programming
Languages

Dan Grossman

Fall 2003

Lecture 14/15?

Object-Oriented Programming

Dan Grossman CSE505 Fall 2003, Lecture 14/15? 1



'

&

$

%

Don’t Believe the Hype

OOP provides concise ways to build extensible software and

exploit a sometimes-useful analogy between interaction of

objects in physical systems and interaction of software parts.

It also raises tricky semantic and style issues that require careful

PL investigation. (Good thing we’re doing it near the end!)

Personally, I am skeptical about:

• The coding factor (X lines/day of accessor methods!)

• The Barnes&Noble factor (certified insane in X days!)

• The intro factor (by week X you can write your own class!)

If it takes an advanced degree to understand objects, I’ve got

the right audience!

Dan Grossman CSE505 Fall 2003, Lecture 14/15? 2



'

&

$

%

So what is OOP?
It seems to look like this. . . That’s a lot; what’s the essence?

class Point1 extends Object {

int x;

int get_x() { x }

unit set_x(int y) { self.x = y }

int distance(Point1 p) { p.get_x() - self.get_x() }

constructor() { x = 0; }

}

class Point2 extends Point1 {

int y;

int get_y() { y }

int get_x() { 34+super.get_x(); }

constructor() { super(); y=0; }

}

Dan Grossman CSE505 Fall 2003, Lecture 14/15? 3



'

&

$

%

OOP can mean many things

• An ADT (private fields)

• Subtyping

• Inheritance, method/field extension, method override

• Implicit this/self

• Dynamic dispatch

• All the above (plus constructor(s)) with 1 class

declaration

Let’s consider how OO each of these is. . .

Side question: Is “good design” many combinable

constructs or one “do it all” construct?

Dan Grossman CSE505 Fall 2003, Lecture 14/15? 4



'

&

$

%

OO as ADT-focused
Object/class members (fields, methods, constructors) often

have visibilities and “more private” is sort of “more abstract”

What code can invoke a method/access a field? Other methods

in same object, other methods in same class, a subclass, within

some other boundary (e.g., a package), any code, . . .

With just classes, the only other way to hide a member is

upcasting. With interfaces (which are more like record types),

we can hide members more selectively:

interface I { int distance(Point1 p); }

class Point1 { ... I f() { return self; } ... }

Last lecture we saw objects are a bad match for “strong binary

methods” (we’ll come back to this)

Dan Grossman CSE505 Fall 2003, Lecture 14/15? 5



'

&

$

%

Records with private fields

Let’s assume all fields are visible only to self object. Then

objects are just a record of methods with private state.

So far, this is no need for a fancy OO language:

let point1_constructor () =

let x = ref 0 in

let rec self =

{ get_x () = !x;

set_x y = x := y;

distance p = p.get() - self.get() } in

self

But there’s more to it (haven’t considered inheritance yet)

Dan Grossman CSE505 Fall 2003, Lecture 14/15? 6



'

&

$

%

Subtyping

Most class-based OO languages “confuse” classes and types:

• If C is a class, then C is a type.

• If C extends D (via declaration), then C ≤ D.

• Subtyping is (only) the reflexive, transitive closure of this.

Is this novel? If C adds members, that’s width subtyping.

By this is “by name” subtyping. If classes C1 and C2 are

incomparable in the class hierarchy they are incomparable

types, even if they have the same members.

We will definitely revisit this “subclassing is subtyping”

assumption! (For now, it restricts subtyping and subclassing!)

Dan Grossman CSE505 Fall 2003, Lecture 14/15? 7



'

&

$

%

Subtyping, continued

If C extends D and overrides a method of D, what

restrictions should we have?

• Argument types contravariant (assume less about

arguments)

• Result type covariant (provide more about result)

Many “real” languages are even more restrictive.

Some bend over backward to be more flexible. (Don’t!)

It’s good we studied this in a simpler setting.

Dan Grossman CSE505 Fall 2003, Lecture 14/15? 8



'

&

$

%

Inheritance and Override
A subclass inherits the fields and methods of its superclass. It

can override some methods and have special “super” (a.k.a.

resend) calls.

This isn’t hard in ML either, if everything is visible:

let point1_constructor () =

let rec self =

{ x = ref 0

get_x () = !x;

set_x y = x := y;

distance p = p.get() - self.get() } in self

continued...

Dan Grossman CSE505 Fall 2003, Lecture 14/15? 9



'

&

$

%

Continued...
let point2_constructor () =

let r = point1_constructor () in

let rec self =

{ x = r.x;

get_x () = 34 + r.get();

dinstance = r.distance;

y = ref 0;

... } in self

Fields visible only in subclasses requires multiple

abstractions (doable).

Also have to change point2 code when point1 changes, but

often true in OO too (“fragile base class” issues).

Dan Grossman CSE505 Fall 2003, Lecture 14/15? 10



'

&

$

%

Then what is it?

I claim class-based objects are poor (maybe okay) ADTs,

same old subtyping, and a little syntactic sugar for

extension and override.

So what is that makes OO different in an intellectually

interesting way?

Answer: The “late” binding of self and the dynamic

dispatch that results.

The difference between point2_constructor() and an

object of class Point2 is in the behavior of distance.

Dan Grossman CSE505 Fall 2003, Lecture 14/15? 11



'

&

$

%

More on late binding
Late-binding, dynamic dispatch, and open recursion are all

closely related ideas. The simplest example I know:

Functional (even still O(n)) vs. OO (even now O(1)):

let c1() = let rec r = {

even i = if i > 0 then r.odd (i-1) else true;

odd i = if i > 0 then r.even (i-1) else false} in r

let c2() = let r1 = c1() in

let rec r = {even = r1.even; odd i = i % 2 == 1} in r

class C1 {

int even(int i) {if i>0 then odd(i-1) else true;}

int odd(int i) {if i>0 then even(i-1) else false;}}

class C2 extends C1 {

int odd(int i) {i % 2 == 1} }

Dan Grossman CSE505 Fall 2003, Lecture 14/15? 12



'

&

$

%

Political Spin

“Call your congresspeople. Tell them C2 should have the

right to change even by overriding odd. It’s a question of

code reuse and you deserve better subclasses.”

“Call your congresspeople. Tell them C1.even shouldn’t

break whenever C2 decides to write a bad odd. You

deserve quality code, regardless of subclasses.”

Meanwhile, public television has a “boring” documentary

about quiet behind-the-scenes work to understand the

approaches and how the shortcomings of each can be

compensated.

More about OO to come. . .

Dan Grossman CSE505 Fall 2003, Lecture 14/15? 13


