
'

&

$

%

CSE 505: Concepts of Programming
Languages

Dan Grossman

Fall 2003

Lecture 11

Universally Quantified Types (Parametric Polymorphism)

Dan Grossman CSE505 Fall 2003, Lecture 11 1

'

&

$

%

Where are we
• Lambda-calculus let us model functions and scope

• Types let us avoid getting stuck without encoding ints,

records, etc.

• Needed fix just to be Turing-Complete, still had to

duplicate a lot of code

• Subtyping allowed some code reuse

– primitive notions (e.g., wider records)

– lifted to other types (e.g., functions, deeper records)

• Today: Types of the form ∀α.τ

– uses, theory, connection to ML

• Next Time: Recursive data structures (beyond λ and fix)

Dan Grossman CSE505 Fall 2003, Lecture 11 2

'

&

$

%

The Goal

type ’a mylist;

val mt_list : ’a mylist

val cons : ’a -> ’a mylist -> ’a mylist

val decons : ’a mylist -> ((’a * ’a mylist) option)

val length : ’a mylist -> int

val map : (’a -> ’b) -> ’a mylist -> ’b mylist

Amazing facts about this parametric, abstract interface:

1. Code is reusable (e.g., int, int*int, polymorphic

double_cons)

Dan Grossman CSE505 Fall 2003, Lecture 11 3

'

&

$

%

The Goal

type ’a mylist;

val mt_list : ’a mylist

val cons : ’a -> ’a mylist -> ’a mylist

val decons : ’a mylist -> ((’a * ’a mylist) option)

val length : ’a mylist -> int

val map : (’a -> ’b) -> ’a mylist -> ’b mylist

Amazing facts about this parametric, abstract interface:

2. Clients can’t break safety or fail a downcast (cf. Java

Vectors) (type system prevents heterogeneous lists)

Dan Grossman CSE505 Fall 2003, Lecture 11 4

'

&

$

%

The Goal

type ’a mylist;

val mt_list : ’a mylist

val cons : ’a -> ’a mylist -> ’a mylist

val decons : ’a mylist -> ((’a * ’a mylist) option)

val length : ’a mylist -> int

val map : (’a -> ’b) -> ’a mylist -> ’b mylist

Amazing facts about this parametric, abstract interface:

3. No client can break the abstraction (can reimplement mylists

differently, cf. “pure” Scheme or C++)

Dan Grossman CSE505 Fall 2003, Lecture 11 5

'

&

$

%

The Goal

type ’a mylist;

val mt_list : ’a mylist

val cons : ’a -> ’a mylist -> ’a mylist

val decons : ’a mylist -> ((’a * ’a mylist) option)

val length : ’a mylist -> int

val map : (’a -> ’b) -> ’a mylist -> ’b mylist

Amazing facts about this parametric, abstract interface:

4. The implementation must be “the same” for any “type

instantiation” (i.e., list-library is “parametric” in its type

parameters)

(Try to disprove this. Proof is like our normalization proof.)

Dan Grossman CSE505 Fall 2003, Lecture 11 6

'

&

$

%

The plan

Will build an “anonymous types” version of this library over the

next couple lectures, while doing much more.

• Relate the (more powerful but cumbersome) formal

language to ML

Key technique: type variables (α, β, ...)

• universal for functions: ∀α.∀β.(α → β)

• existential for ADTs (cf. closures, objects):

∃α.(α ∗ (α → int)).

• recursive for data-structures (cf. τ list):

µα.(unit + (τ ∗ α))

But one step at a time...

Dan Grossman CSE505 Fall 2003, Lecture 11 7

'

&

$

%

Simpler examples

id = λx : τ1. x

apply = λx : τ1. λf : τ1 → τ2. f x

twice = λx : τ1. λf : τ1 → τ1. f (f x)

In STλC we had to choose a particular τ1 and τ2.

In ML, we can use type variables, but what does

λx : α. x mean?? (Want ∀α.(α → α))

Just as STλC was concered with the scope of term

variables, our new system will be concerned with the scope

of type variables. . .

Dan Grossman CSE505 Fall 2003, Lecture 11 8

'

&

$

%

Typing Types (sort of)

τ ::= α | ∀α.τ | int | τ → τ | τ ∗ τ | . . .

Γ ::= · | Γ, x:τ

∆ ::= · | ∆, α

Consider types with free type variables meaningless (what is α?)

α ∈ ∆

∆ t̀ α ∆ t̀ int

∆ t̀ τ1 ∆ t̀ τ2

∆ t̀ τ1 → τ2

∆, α t̀ τ

∆ t̀ ∀α.τ

∀α.τ is α-convertible and we define τ [τ ′/α] just like e[e′/x]

We want ∆;Γ ` e : τ to imply ∆ t̀ τ (and ∆ t̀ τ ′ for all τ ′

such that Γ(x) = τ ′)

But then λx : α. x won’t type-check!

Dan Grossman CSE505 Fall 2003, Lecture 11 9

'

&

$

%

Typing Terms

Type-checking now looks like ∆;Γ ` e : τ ; whole programs

should have no free variables or type variables: ·; · ` e : τ

Function rule:

∆;Γ, x:τ1 ` e : τ2 ∆ t̀ τ1

∆;Γ ` λx:τ1. e : τ1 → τ2

How to introduce type variables? Explicit type abstraction:

∆, α; Γ ` e : τ1

∆;Γ ` Λα. e : ∀α.τ1

Dan Grossman CSE505 Fall 2003, Lecture 11 10

'

&

$

%

Type Application

How to eliminate type abstractions? Type application (a.k.a.

instantiation):

(Λα. e)[τ] → e[τ/α]

∆; Γ ` e : ∀α.τ1 ∆ t̀ τ2

∆;Γ ` e[τ2] : τ1[τ2/α]

(Define e[τ/α] as expected.)

Example: let id = Λα. λx : α. x

• id has type ∀α.α → α

• id [int] has type int → int

• id [int ∗ int] has type (int ∗ int) → (int ∗ int)

• (id [∀α.α → α]) id has type ∀α.α → α

Dan Grossman CSE505 Fall 2003, Lecture 11 11

'

&

$

%

More Examples

Let apply1 = Λα. Λβ. λx : α. λf : α → β. f x

• apply1 has type ∀α.∀β.α → (α → β) → β

• ·; x:int → int ` (apply1 [int][int] 3 x) : int

Let apply2 = Λα. λx : α. Λβ. λf : α → β. f x

• apply2 has type ∀α.α → (∀β.(α → β) → β)

(impossible in ML)

• ·; x:int → string, y:int → int `
(let z = apply2 [int] in z (z 3 [int] y) [string] x) :

string

twice = Λα. λx : α. λf : α → α. f (f x) has type

∀α.α → (α → α) → α

Dan Grossman CSE505 Fall 2003, Lecture 11 12

'

&

$

%

The Whole System (called System F)

e ::= c | x | λx : τ . e | e e | Λα. e | e[τ]

τ ::= int | τ → τ | α | ∀α.τ

v ::= c | λx : τ . e | Λα. e

e → e′

e e2 → e′ e2

v e → v e′

e[τ] → e′[τ]

(λx:τ . e)v → e[v/x]

(Λα. e)[τ] → e[τ/α]

∆; Γ ` x : Γ(x)

∆; Γ ` c : int

∆;Γ, x:τ1 ` e : τ2 ∆ t̀ τ1

∆;Γ ` λx:τ1. e : τ1 → τ2

∆, α; Γ ` e : τ1

∆;Γ ` Λα. e : ∀α.τ1

∆; Γ `e1 : τ2 →τ1 ∆;Γ ` e2 : τ2

∆;Γ ` e1 e2 : τ1

∆;Γ `e : ∀α.τ1 ∆ t̀ τ2

∆;Γ ` e[τ2] : τ1[τ2/α]

Dan Grossman CSE505 Fall 2003, Lecture 11 13

'

&

$

%

Metatheory

• Type-safe (need a Type Substitution Lemma)

• All programs terminate (shocking!! we saw id [τ] id)

• Parametricity, theorems for free

– Example: If ·; · ` e : ∀α.∀β.(α ∗ β) → (β ∗ α),
then e is equivalent to

Λα. Λβ. λx:α ∗ β. (x.2, x.1).
Every term with this type is the swap function!!

Intuition: e has no way to make an α or a β and it cannot

tell what α or β are or raise an exception or diverge...

• Types do not affect run-time behavior

Dan Grossman CSE505 Fall 2003, Lecture 11 14

'

&

$

%

Where are we

Understand parametric polymorphism and our ML-like list

interface.

• Defined System F, saw “simple” examples

• Mentioned some unbelievable theorems

Now:

• Reconsider list example

• “Security”-Related example

• Discuss erasure

• Relate to ML

Dan Grossman CSE505 Fall 2003, Lecture 11 15

'

&

$

%

Our goal, revisited
type ’a mylist;

val mt_list : ’a mylist

val cons : ’a -> ’a mylist -> ’a mylist

val decons : ’a mylist -> ((’a * ’a mylist) option)

val length : ’a mylist -> int

val map : (’a -> ’b) -> ’a mylist -> ’b mylist

We can give types to all these values (universally quantify over

α and β).

If ’a mylist was an abbreviation for unit + ’a, we could give

expressions with these types in System F. But

• values of type unit + τ have 0 or 1 τ (not a list)

• exposing type definition lets clients break abstraction

Dan Grossman CSE505 Fall 2003, Lecture 11 16

'

&

$

%

Security from safety?
In STλC, type safety just means not getting stuck.

With type abstraction, it enables secure interfaces!

Example: A thread e should not access files it did not open

(fopen can check permissions)

Λα. λ{fopen : string→α, fread : α→ int}. e

Parametricity ensures any value passed to fread came from this

thread calling fopen...

Suppose we (the system library) implement file-handles as ints.

Then we instantiate α with int, but untrusted code cannot tell.

Memory safety is a necessary but insufficient condition for

language-based enforcement of strong abstractions

Dan Grossman CSE505 Fall 2003, Lecture 11 17

'

&

$

%

Has anything changed?

We said polymorphism was about “many types for same term”,

but for clarity and easy checking, we changed the syntax via

Λα. e and e [τ] and the operational semantics via type

substitution.

Claim: The operational semantics did not “really” change;

types need not exist at run-time.

More formally: There is a translation from System F to the

untyped lambda-calculus (with constants) that erases all types

and produces an equivalent program.

Strengthened induction hypothesis: If e → e1 in System F and

erase(e) → e2 in untyped λ, then e2 = erase(e1).

“Erasure and evaluation commute”

Dan Grossman CSE505 Fall 2003, Lecture 11 18

'

&

$

%

Erasure

Erasure is easy to define—let’s do it together:

erase(c) =

erase(x) =

erase(e1 e2) =

erase(λx:τ . e) =

erase(Λα. e) =

erase(e [τ]) =

In pure System F, preserving evaluation order isn’t crucial,

but it is with fix, exceptions, mutation, etc.

Dan Grossman CSE505 Fall 2003, Lecture 11 19

'

&

$

%

Connection to reality

System F has been one of the most important theoretical

PL models since the early 70s and inspires languages like

ML.

But you have seen ML polymorphism and it looks different.

In fact, it is an implicitly typed restriction of system F.

And these two things ((1) implicit, (2) restriction) have

everything to do with each other.

Dan Grossman CSE505 Fall 2003, Lecture 11 20

'

&

$

%

Restrictions
• All types have the form ∀α1, . . . , αn.τ where n ≥ 0 and

τ has no ∀. (Prenex-quantification; no first-class

polymorphism.)

• Only let (rec) variables (e.g., x in let x = e1 in e2) can

have polymorphic types. So n = 0 for function arguments,

pattern variables, etc. (Let-bound polymorphism)

• For let rec f x = e1 in e2, the variable f can have

type ∀α1, . . . , αn.τ1 → τ2 only if every use of f in e1

instantiates each αi with αi. (No polymorphic recursion)

• Let variables can be polymorphic only if e1 is a “syntactic

value” — a variable, constant, or function definition. (The

value-restriction)

Dan Grossman CSE505 Fall 2003, Lecture 11 21

'

&

$

%

Why? (Part 1)

ML-style polymorphism can seem weird after you have seen

System F. And the restrictions do come up in practice, though

tolerable.

• Type inference for System F (given untyped e, is there a

System F term e′ such that erase(e′) = e) is

undecidable. (1995).

• Type inference for ML with polymorphic recursion

(allowinng different instantiation in body of recursive

functions) is undecidable (1992).

• Type inference for ML is decidable and efficient in practice,

though pathological programs of size O(n) and run-time

O(n) can have types of size O(22n

).

Dan Grossman CSE505 Fall 2003, Lecture 11 22

'

&

$

%

Why? (Part 2)

• The type inference algorithm (which many of you have

seen in AI!) is unsound in the presence of ML-style

mutation, but the value-restriction restores soundness.

Extensions to the ML type system to be closer to System F are

judged by:

• Soundness: Do programs still not get stuck?

• Conservatism: Does every old ML program still

type-check?

• Power: Does it accept all/most programs from System F?

• Convenience: Are many new types still inferred?

Proposals are getting mature; will probably happen soon.

Dan Grossman CSE505 Fall 2003, Lecture 11 23

'

&

$

%

That was a lot!

We saw System F and discussed its many amazing

properties.

We compared System F to ML-style polymorphism, which

should make more sense now.

Next up: Recursive types and existential types (which

complete our list example)

Then: Mutation (and how it destroys all our nice

properties)

Dan Grossman CSE505 Fall 2003, Lecture 11 24

