4 N

CSE 505:
Concepts of Programming Languages

Dan Grossman
Fall 2003
Lecture 1— Course Introduction

o /

Dan Grossman CSE505 Fall 2003, Lecture 1 1

Kl'oday

o

Administrative stuff

Course motivation and goals

— A Java example

Course overview

Course pitfalls

Our first simple language: IMP

Dan Grossman

CSE505 Fall 2003, Lecture 1

/Cou rse facts

~

e Dan Grossman, CSE556, djg@cs.washington.edu

e Office hours: TBD (Tuesday 2-3 plus appt.) ?

e Conventional wisdom on new profs:
— course too hard
— no good at admin details

— so |'ll try to avoid this fate

e Web page for mailing list and homework 1 (start

\ problem 0 after Thursday's lecture)

e TA: Andy Collins, CSE302, acollins@cs.washington.edu

/

Dan Grossman CSEb505 Fall 2003, Lecture 1

/Cou rsework

e 4-5 homeworks
— “paper/pencil” (ATEXrecommended?)
— programming (OCaml required)

— where you'll probably learn the most

e 2 exams

— open notes/book, closed web
e |ecture notes usually available online

e Textbook: mostly for “middle of course”

\ — won't follow it too closely

Dan Grossman CSEb505 Fall 2003, Lecture 1

/Academic Integrity \

e If you violate the rules, | will enforce the maximum

penalty allowed
— and I'll be personally offended

— far more important than your grade

e Rough guidelines
— can sketch idea together

— cannot look at code solutions

e Ask questions and always describe what you did

- /

Dan Grossman CSEb505 Fall 2003, Lecture 1 5

/Programming—language concepts

Focus on semantic concepts:

What do programs mean
(do/compute/produce/represent)?

How to define a language precisely?
English is a poor metalanguage

Aspects of meaning:

equivalence, termination, determinism, type, ...

o

Dan Grossman CSEb505 Fall 2003, Lecture 1

/Does It matter? \

Freshmen write programs that “work as expected,” so why
be rigorous/precise/pedantic?

e | he world runs on software

Web-servers and nuclear reactors don't “seem to work”
e You buy language implementations—what do they do?
e Software is buggy—semantics assigns blame
e Never say “nobody would write that”
Also: Rigor is a hallmark of quality research

o /

Dan Grossman CSEb505 Fall 2003, Lecture 1 7

/Java example \

class A { int f() { return O; } }
class B {
int g(A %) {
try { return x.£Q; }
finally { s }
}

+

For all s, is it equivalent for g's body to be “return 0;"7

Motivation: code optimizer, code maintainer, ...

o /

Dan Grossman CSEb505 Fall 2003, Lecture 1 8

/Punch—line \

Not equivalent:

e Extend A
e a could be null
e s could modify global state, diverge, throw, ...
e s could return
A silly example, but:

e PL makes you a good adversary, programmer

e PL gives you the tools to argue equivalence (hard!)

o /

Dan Grossman CSEb505 Fall 2003, Lecture 1 9

/Cou rse goals \

1. Learn intellectual tools for describing program behavior

2. Investigate concepts essential to most languages
e mutation and iteration
e scope and functions

e objects
3. Write programs to “connect theory with the code”
4. Sketch applicability to “real” languages

5. Provide background for current PL research

\ (less important for most of you) /

Dan Grossman CSE505 Fall 2003, Lecture 1 10

/Course nongoals \

e Study syntax; learn to specify grammars, parsers

— Transforming 3 + 4 or (4+ 3 4) or +(3,4) to
“application of plus operator to constants three

and four”

— stop me when | get too sloppy
e Learn specific programming languages (but some ML)

e Denotational and axiomatic semantics
— Would include them if | had 25 weeks
— Will explain what they are later

- /

Dan Grossman CSE505 Fall 2003, Lecture 1 11

/VVhat we will do

o

e Define really small languages

— Usually Turing complete

— Always unsuitable for real programming
Study them rigorously via operational models
Extend them to realistic languages less rigorously

Digress for cool results (this is fun!?!)

Do programming assignments in OCaml...

/

Dan Grossman CSEb05 Fall 2003, Lecture 1

12

/OCamI \

e OCaml is an awesome, high-level language

e \We will use a tiny core subset of it that is well-suited
for manipulating recursive data structures (like
programs!)

e You have to learn it outside of class, but next lecture

will be a primer

e [oday, go to www.ocaml.org and

caml.inria.fr/oreilly-book/

e | am not a language zealot, but knowing ML makes

\ you a better programmer /

Dan Grossman CSE505 Fall 2003, Lecture 1 13

/Pitfalls \

How to hate this course and get the wrong idea:

e Forget that we made simple models to focus on

essentials
e Don't quite get inductive definitions and proofs

e Don't try other ways to model/prove the idea
— You'll probably be wrong
— And therefore you'll learn more

e Think PL people focus on only obvious facts (need to
start there)

o /

Dan Grossman CSE505 Fall 2003, Lecture 1 14

/Final Metacomment \

Acknowledging others is crucial...

This course will draw heavily on:
e Previous versions of the course (Borning, Chambers)

e Similar courses elsewhere (Harper, Morrisett, Myers,

Pierce, Rugina, Walker, ...)
o Texts (Pierce, Wynskel, ...)

This is a course, not my work.

o /

Dan Grossman CSEb05 Fall 2003, Lecture 1 15

/Finally, some content \

For our first formal language, let's leave out functions,

objects, records, threads, exceptions, ...
What's left: integers, assignment (mutation), control-flow
(Abstract) syntax using a common meta-notation:
“A program is a statement s defined as follows”
s u= skip|x:=e|s;s|if ess|whilees
e 2= clx|etel|lexe
(c € {..,—-2,-1,0,1,2,...})

(213 S {$19$27°°°7y19y27°°°9Z19Z29°°°9°°°})

/

Dan Grossman CSEb05 Fall 2003, Lecture 1 16

/Syntax definition \

s == skip|x:=e|s;s|ifess|whilees

e 2= clx|etel|lexe

(c € {...,—-2,-1,0,1,2,...})
(x € {X1,T2yecesY1sY2seeesZ15225cecseecs})
e Blue is metanotation (::= ‘“can be a", | “or”"

e Metavariables represent “anything in the syntax class”

e Use parentheses to disambiguate, e.g.,
if xskipy:=0;2z:=0

gg.: y:=1;(whilex (y:=y*x;52:=2—1) /

Dan Grossman CSEb05 Fall 2003, Lecture 1 17

mductive definition \

With care, our syntax definition is not circular!

s = skip|x:=e|s;s|ifess|whilees
e = clx|etel|lexe
Let Eg = 0. Forz > 0, let E; be E;_1 union
“expressions of the form ¢, x, e + e, or e x e where

e € E, 1" Let E = ;> E;i. The set E is what we
mean by our compact metanotation.

To get it: What set is 1?7 FE57?

Explain statements the same way. What is §77 S2? Stop

@Iy when you're bored. /

Dan Grossman CSEb05 Fall 2003, Lecture 1 18

/Summary \

e Did that first-day stuff

— Install and play with OCaml

— Ask questions
e Motivated precise language definitions

e Defined syntax
— For a very small language

— Very carefully

Next: Syntax proofs, Then: Caml primer, Then: Semantics

o /

Dan Grossman CSEb05 Fall 2003, Lecture 1 19

/Proving Obvious Stuff \

All we have is syntax (sets of abstract-syntax trees), but

let's get the idea of proving things carefully...

Theorem 1: There exist expressions with three constants.

o /

Dan Grossman CSEb05 Fall 2003, Lecture 1 20

/Our First Theorem \

There exist expressions with three constants.

Pedantic Proof: Consider e =1 4+ (2 4+ 3). Showing
e € FEj suffices because 3 C E. Showing 2 + 3 € Es
and 1 € E» suffices...

PL-style proof: Consider e = 1 + (2 + 3) and definition
of E.

Theorem 2: All expressions have at least one constant or
variable.

o /

Dan Grossman CSE505 Fall 2003, Lecture 1 21

/Our Second Theorem

~

All expressions have at least one constant or variable.

Pedantic proof: By induction on 2, show for all e € FE;.

e Base: i = 0 implies E; = 0

e Inductive: 2 > 0. Consider arbitrary e € E; by cases:

o

BEEi_l...
e =¢c...
€E =X ...

e —e; + ez whereej,eqs € E;_q ...

e — e1 * ez Whereej,es € E;_1 ...

/

Dan Grossman

CSE505 Fall 2003, Lecture 1

A "Better’' Proof \

All expressions have at least one constant or variable.

PL-style proof: By structural induction on (rules for
forming an expression) e. Cases:

® C...
e U ...
061—|—€2...
® €1 k€ ...

Structural induction invokes the induction hypothesis on
smaller terms. It is equivalent to the pedantic proof, and

{he convenient way. /

Dan Grossman CSEb05 Fall 2003, Lecture 1 23

