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CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2003

Lecture 1— Course Introduction

Dan Grossman CSE505 Fall 2003, Lecture 1 1



'

&

$

%

Today

• Administrative stuff

• Course motivation and goals

– A Java example

• Course overview

• Course pitfalls

• Our first simple language: IMP
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Course facts

• Dan Grossman, CSE556, djg@cs.washington.edu

• TA: Andy Collins, CSE302, acollins@cs.washington.edu

• Office hours: TBD (Tuesday 2-3 plus appt.) ?

• Conventional wisdom on new profs:

– course too hard

– no good at admin details

– so I’ll try to avoid this fate

• Web page for mailing list and homework 1 (start

problem 0 after Thursday’s lecture)
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Coursework

• 4–5 homeworks

– “paper/pencil” (LATEXrecommended?)

– programming (OCaml required)

– where you’ll probably learn the most

• 2 exams

– open notes/book, closed web

• Lecture notes usually available online

• Textbook: mostly for “middle of course”

– won’t follow it too closely
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Academic integrity

• If you violate the rules, I will enforce the maximum

penalty allowed

– and I’ll be personally offended

– far more important than your grade

• Rough guidelines

– can sketch idea together

– cannot look at code solutions

• Ask questions and always describe what you did
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Programming-language concepts

Focus on semantic concepts:

What do programs mean

(do/compute/produce/represent)?

How to define a language precisely?

English is a poor metalanguage

Aspects of meaning:

equivalence, termination, determinism, type, . . .
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Does it matter?

Freshmen write programs that “work as expected,” so why

be rigorous/precise/pedantic?

• The world runs on software

Web-servers and nuclear reactors don’t “seem to work”

• You buy language implementations—what do they do?

• Software is buggy—semantics assigns blame

• Never say “nobody would write that”

Also: Rigor is a hallmark of quality research
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Java example

class A { int f() { return 0; } }

class B {

int g(A x) {

try { return x.f(); }

finally { s }

}

}

For all s, is it equivalent for g’s body to be “return 0;”?

Motivation: code optimizer, code maintainer, ...
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Punch-line

Not equivalent:

• Extend A

• a could be null

• s could modify global state, diverge, throw, ...

• s could return

A silly example, but:

• PL makes you a good adversary, programmer

• PL gives you the tools to argue equivalence (hard!)
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Course goals

1. Learn intellectual tools for describing program behavior

2. Investigate concepts essential to most languages

• mutation and iteration

• scope and functions

• objects

3. Write programs to “connect theory with the code”

4. Sketch applicability to “real” languages

5. Provide background for current PL research

(less important for most of you)
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Course nongoals

• Study syntax; learn to specify grammars, parsers

– Transforming 3 + 4 or (+ 3 4) or +(3, 4) to

“application of plus operator to constants three

and four”

– stop me when I get too sloppy

• Learn specific programming languages (but some ML)

• Denotational and axiomatic semantics

– Would include them if I had 25 weeks

– Will explain what they are later
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What we will do

• Define really small languages

– Usually Turing complete

– Always unsuitable for real programming

• Study them rigorously via operational models

• Extend them to realistic languages less rigorously

• Digress for cool results (this is fun!?!)

• Do programming assignments in OCaml...
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OCaml

• OCaml is an awesome, high-level language

• We will use a tiny core subset of it that is well-suited

for manipulating recursive data structures (like

programs!)

• You have to learn it outside of class, but next lecture

will be a primer

• Today, go to www.ocaml.org and

caml.inria.fr/oreilly-book/

• I am not a language zealot, but knowing ML makes

you a better programmer
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Pitfalls

How to hate this course and get the wrong idea:

• Forget that we made simple models to focus on

essentials

• Don’t quite get inductive definitions and proofs

• Don’t try other ways to model/prove the idea

– You’ll probably be wrong

– And therefore you’ll learn more

• Think PL people focus on only obvious facts (need to

start there)
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Final Metacomment

Acknowledging others is crucial...

This course will draw heavily on:

• Previous versions of the course (Borning, Chambers)

• Similar courses elsewhere (Harper, Morrisett, Myers,

Pierce, Rugina, Walker, ...)

• Texts (Pierce, Wynskel, ...)

This is a course, not my work.
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Finally, some content

For our first formal language, let’s leave out functions,

objects, records, threads, exceptions, ...

What’s left: integers, assignment (mutation), control-flow

(Abstract) syntax using a common meta-notation:

“A program is a statement s defined as follows”

s ::= skip | x := e | s; s | if e s s | while e s

e ::= c | x | e + e | e ∗ e

(c ∈ {. . . , −2, −1, 0, 1, 2, . . .})

(x ∈ {x1, x2, . . . , y1, y2, . . . , z1, z2, . . . , . . .})
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Syntax definition

s ::= skip | x := e | s; s | if e s s | while e s

e ::= c | x | e + e | e ∗ e

(c ∈ {. . . , −2, −1, 0, 1, 2, . . .})

(x ∈ {x1, x2, . . . , y1, y2, . . . , z1, z2, . . . , . . .})

• Blue is metanotation (::= “can be a”, | “or”)

• Metavariables represent “anything in the syntax class”

• Use parentheses to disambiguate, e.g.,

if x skip y := 0; z := 0

E.g.: y := 1; (while x (y := y ∗ x; x := x − 1)
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Inductive definition

With care, our syntax definition is not circular!

s ::= skip | x := e | s; s | if e s s | while e s

e ::= c | x | e + e | e ∗ e

Let E0 = ∅. For i > 0, let Ei be Ei−1 union

“expressions of the form c, x, e + e, or e ∗ e where

e ∈ Ei−1”. Let E =
⋃

i≥0 Ei. The set E is what we

mean by our compact metanotation.

To get it: What set is E1? E2?

Explain statements the same way. What is S1? S2? Stop

only when you’re bored.
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Summary

• Did that first-day stuff

– Install and play with OCaml

– Ask questions

• Motivated precise language definitions

• Defined syntax

– For a very small language

– Very carefully

Next: Syntax proofs, Then: Caml primer, Then: Semantics
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Proving Obvious Stuff

All we have is syntax (sets of abstract-syntax trees), but

let’s get the idea of proving things carefully...

Theorem 1: There exist expressions with three constants.

Dan Grossman CSE505 Fall 2003, Lecture 1 20



'

&

$

%

Our First Theorem

There exist expressions with three constants.

Pedantic Proof: Consider e = 1 + (2 + 3). Showing

e ∈ E3 suffices because E3 ⊆ E. Showing 2 + 3 ∈ E2

and 1 ∈ E2 suffices...

PL-style proof: Consider e = 1 + (2 + 3) and definition

of E.

Theorem 2: All expressions have at least one constant or

variable.
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Our Second Theorem

All expressions have at least one constant or variable.

Pedantic proof: By induction on i, show for all e ∈ Ei.

• Base: i = 0 implies Ei = ∅

• Inductive: i > 0. Consider arbitrary e ∈ Ei by cases:

– e ∈ Ei−1 . . .

– e = c . . .

– e = x . . .

– e = e1 + e2 where e1, e2 ∈ Ei−1 . . .

– e = e1 ∗ e2 where e1, e2 ∈ Ei−1 . . .
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A “Better” Proof
All expressions have at least one constant or variable.

PL-style proof: By structural induction on (rules for

forming an expression) e. Cases:

• c . . .

• x . . .

• e1 + e2 . . .

• e1 ∗ e2 . . .

Structural induction invokes the induction hypothesis on

smaller terms. It is equivalent to the pedantic proof, and

the convenient way.
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