
'

&

$

%

CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2003

Lecture 1— Course Introduction

Dan Grossman CSE505 Fall 2003, Lecture 1 1

'

&

$

%

Today

• Administrative stuff

• Course motivation and goals

– A Java example

• Course overview

• Course pitfalls

• Our first simple language: IMP

Dan Grossman CSE505 Fall 2003, Lecture 1 2

'

&

$

%

Course facts

• Dan Grossman, CSE556, djg@cs.washington.edu

• TA: Andy Collins, CSE302, acollins@cs.washington.edu

• Office hours: TBD (Tuesday 2-3 plus appt.) ?

• Conventional wisdom on new profs:

– course too hard

– no good at admin details

– so I’ll try to avoid this fate

• Web page for mailing list and homework 1 (start

problem 0 after Thursday’s lecture)

Dan Grossman CSE505 Fall 2003, Lecture 1 3

'

&

$

%

Coursework

• 4–5 homeworks

– “paper/pencil” (LATEXrecommended?)

– programming (OCaml required)

– where you’ll probably learn the most

• 2 exams

– open notes/book, closed web

• Lecture notes usually available online

• Textbook: mostly for “middle of course”

– won’t follow it too closely

Dan Grossman CSE505 Fall 2003, Lecture 1 4

'

&

$

%

Academic integrity

• If you violate the rules, I will enforce the maximum

penalty allowed

– and I’ll be personally offended

– far more important than your grade

• Rough guidelines

– can sketch idea together

– cannot look at code solutions

• Ask questions and always describe what you did

Dan Grossman CSE505 Fall 2003, Lecture 1 5

'

&

$

%

Programming-language concepts

Focus on semantic concepts:

What do programs mean

(do/compute/produce/represent)?

How to define a language precisely?

English is a poor metalanguage

Aspects of meaning:

equivalence, termination, determinism, type, . . .

Dan Grossman CSE505 Fall 2003, Lecture 1 6

'

&

$

%

Does it matter?

Freshmen write programs that “work as expected,” so why

be rigorous/precise/pedantic?

• The world runs on software

Web-servers and nuclear reactors don’t “seem to work”

• You buy language implementations—what do they do?

• Software is buggy—semantics assigns blame

• Never say “nobody would write that”

Also: Rigor is a hallmark of quality research

Dan Grossman CSE505 Fall 2003, Lecture 1 7

'

&

$

%

Java example

class A { int f() { return 0; } }

class B {

int g(A x) {

try { return x.f(); }

finally { s }

}

}

For all s, is it equivalent for g’s body to be “return 0;”?

Motivation: code optimizer, code maintainer, ...

Dan Grossman CSE505 Fall 2003, Lecture 1 8

'

&

$

%

Punch-line

Not equivalent:

• Extend A

• a could be null

• s could modify global state, diverge, throw, ...

• s could return

A silly example, but:

• PL makes you a good adversary, programmer

• PL gives you the tools to argue equivalence (hard!)

Dan Grossman CSE505 Fall 2003, Lecture 1 9

'

&

$

%

Course goals

1. Learn intellectual tools for describing program behavior

2. Investigate concepts essential to most languages

• mutation and iteration

• scope and functions

• objects

3. Write programs to “connect theory with the code”

4. Sketch applicability to “real” languages

5. Provide background for current PL research

(less important for most of you)

Dan Grossman CSE505 Fall 2003, Lecture 1 10

'

&

$

%

Course nongoals

• Study syntax; learn to specify grammars, parsers

– Transforming 3 + 4 or (+ 3 4) or +(3, 4) to

“application of plus operator to constants three

and four”

– stop me when I get too sloppy

• Learn specific programming languages (but some ML)

• Denotational and axiomatic semantics

– Would include them if I had 25 weeks

– Will explain what they are later

Dan Grossman CSE505 Fall 2003, Lecture 1 11

'

&

$

%

What we will do

• Define really small languages

– Usually Turing complete

– Always unsuitable for real programming

• Study them rigorously via operational models

• Extend them to realistic languages less rigorously

• Digress for cool results (this is fun!?!)

• Do programming assignments in OCaml...

Dan Grossman CSE505 Fall 2003, Lecture 1 12

'

&

$

%

OCaml

• OCaml is an awesome, high-level language

• We will use a tiny core subset of it that is well-suited

for manipulating recursive data structures (like

programs!)

• You have to learn it outside of class, but next lecture

will be a primer

• Today, go to www.ocaml.org and

caml.inria.fr/oreilly-book/

• I am not a language zealot, but knowing ML makes

you a better programmer

Dan Grossman CSE505 Fall 2003, Lecture 1 13

'

&

$

%

Pitfalls

How to hate this course and get the wrong idea:

• Forget that we made simple models to focus on

essentials

• Don’t quite get inductive definitions and proofs

• Don’t try other ways to model/prove the idea

– You’ll probably be wrong

– And therefore you’ll learn more

• Think PL people focus on only obvious facts (need to

start there)

Dan Grossman CSE505 Fall 2003, Lecture 1 14

'

&

$

%

Final Metacomment

Acknowledging others is crucial...

This course will draw heavily on:

• Previous versions of the course (Borning, Chambers)

• Similar courses elsewhere (Harper, Morrisett, Myers,

Pierce, Rugina, Walker, ...)

• Texts (Pierce, Wynskel, ...)

This is a course, not my work.

Dan Grossman CSE505 Fall 2003, Lecture 1 15

'

&

$

%

Finally, some content

For our first formal language, let’s leave out functions,

objects, records, threads, exceptions, ...

What’s left: integers, assignment (mutation), control-flow

(Abstract) syntax using a common meta-notation:

“A program is a statement s defined as follows”

s ::= skip | x := e | s; s | if e s s | while e s

e ::= c | x | e + e | e ∗ e

(c ∈ {. . . , −2, −1, 0, 1, 2, . . .})

(x ∈ {x1, x2, . . . , y1, y2, . . . , z1, z2, . . . , . . .})

Dan Grossman CSE505 Fall 2003, Lecture 1 16

'

&

$

%

Syntax definition

s ::= skip | x := e | s; s | if e s s | while e s

e ::= c | x | e + e | e ∗ e

(c ∈ {. . . , −2, −1, 0, 1, 2, . . .})

(x ∈ {x1, x2, . . . , y1, y2, . . . , z1, z2, . . . , . . .})

• Blue is metanotation (::= “can be a”, | “or”)

• Metavariables represent “anything in the syntax class”

• Use parentheses to disambiguate, e.g.,

if x skip y := 0; z := 0

E.g.: y := 1; (while x (y := y ∗ x; x := x − 1)

Dan Grossman CSE505 Fall 2003, Lecture 1 17

'

&

$

%

Inductive definition

With care, our syntax definition is not circular!

s ::= skip | x := e | s; s | if e s s | while e s

e ::= c | x | e + e | e ∗ e

Let E0 = ∅. For i > 0, let Ei be Ei−1 union

“expressions of the form c, x, e + e, or e ∗ e where

e ∈ Ei−1”. Let E =
⋃

i≥0 Ei. The set E is what we

mean by our compact metanotation.

To get it: What set is E1? E2?

Explain statements the same way. What is S1? S2? Stop

only when you’re bored.

Dan Grossman CSE505 Fall 2003, Lecture 1 18

'

&

$

%

Summary

• Did that first-day stuff

– Install and play with OCaml

– Ask questions

• Motivated precise language definitions

• Defined syntax

– For a very small language

– Very carefully

Next: Syntax proofs, Then: Caml primer, Then: Semantics

Dan Grossman CSE505 Fall 2003, Lecture 1 19

'

&

$

%

Proving Obvious Stuff

All we have is syntax (sets of abstract-syntax trees), but

let’s get the idea of proving things carefully...

Theorem 1: There exist expressions with three constants.

Dan Grossman CSE505 Fall 2003, Lecture 1 20

'

&

$

%

Our First Theorem

There exist expressions with three constants.

Pedantic Proof: Consider e = 1 + (2 + 3). Showing

e ∈ E3 suffices because E3 ⊆ E. Showing 2 + 3 ∈ E2

and 1 ∈ E2 suffices...

PL-style proof: Consider e = 1 + (2 + 3) and definition

of E.

Theorem 2: All expressions have at least one constant or

variable.

Dan Grossman CSE505 Fall 2003, Lecture 1 21

'

&

$

%

Our Second Theorem

All expressions have at least one constant or variable.

Pedantic proof: By induction on i, show for all e ∈ Ei.

• Base: i = 0 implies Ei = ∅

• Inductive: i > 0. Consider arbitrary e ∈ Ei by cases:

– e ∈ Ei−1 . . .

– e = c . . .

– e = x . . .

– e = e1 + e2 where e1, e2 ∈ Ei−1 . . .

– e = e1 ∗ e2 where e1, e2 ∈ Ei−1 . . .

Dan Grossman CSE505 Fall 2003, Lecture 1 22

'

&

$

%

A “Better” Proof
All expressions have at least one constant or variable.

PL-style proof: By structural induction on (rules for

forming an expression) e. Cases:

• c . . .

• x . . .

• e1 + e2 . . .

• e1 ∗ e2 . . .

Structural induction invokes the induction hypothesis on

smaller terms. It is equivalent to the pedantic proof, and

the convenient way.

Dan Grossman CSE505 Fall 2003, Lecture 1 23

