
CSE 505, Fall 2003, Assignment 1, Sample Solution

(0) See the file trees.ml, which implements both the integer and polymorpic trees, using separate names
for the functions and type constructors to avoid conflicts and confusion.

(1a) A heap is an OCaml function from strings to integers. The empty heap is function that returns 0 for
any input. To look up a variable, we apply the OCaml function to the appropriate string. To set a
variable, we create a new function that returns the new value when given the string for the variable.
Otherwise the created function calls the function implementing the “old” heap.

(1b) The heap in interp1.ml (and interp2.ml) does this, but also handles storing constants or statements
in variables. A solution to strictly this problem would look like:

let mt_heap = []

let rec get_var heap str =

match heap with

[] -> 0

| (s,v)::tl -> if s=str then v else get_var tl str

let set_var heap str v = (str,v)::heap

Note that the only differences between this and the version in interp?.ml are the absense of the
heap_val type and that the empty heap maps variables to 0 rather than I 0. Also, it was not
necessary to provide both an isolated implementation of the heap for this question and a separate
version for question (3b); combining them is perfectly acceptable.

(1c) The interpreter would “forget” any changes to the heap made by a statement nested within the left
side of a sequence statement. For example, ans := 1; skip would produce a heap where ans held 0.

(2a) The following two rules implement the “base case” and the “recursive case” of ntimes. Note the
structural similarity to the rules for if.

H ; e ⇓ c c ≤ 0

H ; ntimes e (s) → H ; skip

H ; e ⇓ c c > 0

H ; ntimes e (s) → H ; s; ntimes (c − 1) (s)

(2b) The following rule translates an ntimes statement directly into a while statement, using a fresh variable
to control the loop.

x fresh

H ; ntimes e (s) → H ; x := e; while x (x := x − 1; s)

(2c.i) False. Consider H = ·, x 7→ 0, s = (while x skip); x := 1, and e = 2 — here s has the property that, for
the heap H , it terminates when run once, but modifies the heap to ensure that it will not terminate if
run a second time on the new heap.

(2c.ii) False. Consider H = ·, s = while 1 skip, and e = 0 — by letting e = 0, the statement ntimes e (s)
trivially terminates, even if s alone would not.

(2c.iii) True.

Informally, this is because the statement s terminates for all heaps H . Therefore nothing one iteration
of s does to modify the heap can prevent a future iteration from terminating. Since the number of
iterations is fixed, and each iteration eventually terminates, the entire construct must also terminate.
The proof is as follows:

From the theorems in lecture, we know that for all H and e, H ; e ⇓ c for some c. The proof is by
induction on that constant c.

1

The base case is trivial: If c ≤ 0, then for any s, H ; ntimes e (s) terminates after one step (using the
rules in 2a).

If c > 0, then ntimes e (s) becomes s; ntimes (c − 1) (s). By assumption, H ; s terminates, so using the
semantics of sequence statements, we know H ; s; ntimes (c − 1) (s) →∗ H ′; ntimes (c − 1) (s) for some
H ′. The induction hypothesis applies to H ′ and ntimes (c − 1) (s), so H ′; ntimes (c − 1) (s) terminates.
So by the definition of →∗, H ; ntimes e (s) terminates.

(2c.iv) False. Consider H = ·, s = while 1 skip, and e = 0 — this is the same counterexample we used for
(2c.ii), and is exploiting the same hole of e = 0.

(2d) See the file interp1.ml, lines 39–43.

(3a) Following the hint, these rules extend the semantics of heaps to allow variables to map to either
constants or expressions (first line of rules); extend the lookup operation to handle these two cases
(second line); and extend the operational semantics to handle assignment of code pointers (third line,
first rule) and execuation of proper and “improper” code pointers.

H ::= · | H, x 7→ c | H, x 7→ s H(x) =















c if H = H, x 7→ c

s if H = H, x 7→ s

H ′(x) if H = H ′, y 7→ c′

0 if H = ·

H(x) = c

H ; x ⇓ c

H(x) = s

H ; x ⇓ 0

H ; x := (s) → H, x 7→ s ; skip

H(x) = s

H ; run x → H ; s

H(x) = c

H ; run x → H ; skip

(3b) See the file interp1.ml, most particularly lines 44–48, but this change also affects the heap, requiring
changes there, and in the places where the heap is read (lines 19–22 and 52, at least), and written (line
29, at least).

(3c) x := (ans := 42); run x

(4a) See the file interp2.ml, particularly lines 23 and 48.

(4b) See the file interp2.ml, lines 58–97. The “heavy lifting” is done by the recursive get_vars_stmt

function, which walks the abstract syntax tree building four lists (packaged into a single data type) with
the variables appearing in expressions, assignments, statement assignements, and run statements. Note
that the @ operator is for list concatenation, so the combine_vars function is for vars concatention.
prevent_error then uses the built-in list iteration functions to walk the lists looking for conflicts.

(4c) x := 3; y := x; x := skip; run x. Another interesting one is x := 1; x := 0; run x.

(4d.i) Yes. Because prevent_error is a conservative analysis to prevent runtime errors (a fact which we
asserted in question (4c), although we have not formally proven), we know that no program for which
prevent_error s is true will ever raise a runtime error. Since the only situation in which the inter-
preters behave differently are the runtime error cases, no program for which prevent_error is true
can have different behavior under the two interpreters.

(4d.ii) No. The language is Turing complete, even without code pointers. If s is an arbitrary code-pointer
free program, then s; x := skip; y := x + 1 generates an error if and only if s terminates, which is
undecidable.

2

