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Point distribution

Yet again, this homework is graded out of 30 points, to make it equal in value to the others, even though it
is shorter. The points were divided 8, 8, and 14 to questions 1, 2, and 3, respectively. (1a) and (1b) were
worth three points each, and all other parts two points, except (3e), which was worth six points.

Overall, scores were quite good, and it looked like most everybody understood what was going on. By
and large this was the main grading criterion, especially for problem 2, where we hadn’t necessarily fully
developed all of the language to talk about these issues.

1 Typed currying

Nearly everybody did well here. The O’Caml implementations were universally correct, and the errors in
the System F expressions all looked minor and typo-ish. I saw lots of ways of implementing not-curry and
not-uncurry, and I suspect some people were just trying to keep my life interesting with their creativity
here.

1.1 in System F

e1 = Λα1. Λα2. Λα3. λx1:(α1 ∗ α2) → α3. λx2:α1. λx3:α2. x1 (x2, x3)

e2 = Λα1. Λα2. Λα3. λx1:α1 → α2 → α3. λx2:α1 ∗ α2. x1 x2.1 x2.2

1.2 in O’Caml

The basic solution to this in O’Caml is something like:

let curry f = fun x -> fun y -> f (x,y)

let uncurry f = fun (x,y) -> f x y

using explicit fun constructs to build a curried function. Of course you can also use O’Caml syntactic sugar;
the shortest solution I saw was:

let curry f x y = f (x,y)

let uncurry f (x,y) = f x y

1.3 not in O’Caml

The point here was that O’Caml can use mutation, exceptions, and/or infinite loops to create something
that looks like a curry or uncurry function, but is not. This means that our “free theorems” do not translate
to the O’Caml world, because they explicitly assume no side effects. Infinite loops are an interesting and
more arguable case. I let them go here, although one could make the argument that a function that never
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terminates is a curry or uncurry (if the type is right), because it never returns anything that isn’t an
appropriately curried or uncurried output. This goes back to our discussion of what means “equivalent” in
lecture.

The following is an implementation with exceptions (which was the most common solution, and probably
the most simple and brief):

exception E

let not_curry f = (raise E; curry f)

let not_uncurry f = (raise E; uncurry f)

2 Picking on Java

Dan’s concise answers to the four parts are:

(a) In main, the second argument (a) in the call to f subsumes C[] to Object[]. Java’s rule for subtyping
arrays is C[]<D[] if C<D.

(b) The program does not execute any downcasts, implicit or explict. Running it causes an uncaught
ArrayStoreException to be thrown.

(c) Array update takes an array-object a, an index i, and on object o. The array-object a has a length and
an element-type, both chosen when the object is constructed. For example, the expression new C[10]

constructs an array with length 10 and element-type C. If i is greater than the length, an ArrayBound-
sException is thrown. If o has a different run-time type than a’s element type, an ArrayStoreException
is thrown. Else, the ith element of the array is mutated to refer to o.

(d) No. Implementing array-update requires, at run-time, the type of the array’s elements and the type
of the object being assigned to an array element. (This would not be necessary if array subtyping was
invariant!)

To which I might add some commentary:
For part (a), there are two things I wanted to see: something to tell me that the subsumption happens

at the point where the function f is called, and a description of the generic subtyping rule. We don’t care
about the overall typing rule for arrays (which basically says that something has type C[] if its elements
have type C, only the subtyping rule to relate two arrays.

For part (b), I was looking for recognition that the statement arr[0] = x; cannot be executed and
throws an exception, and some explanation of why it cannot be executed. I didn’t need to see, although
you should definitely understand, why we got into this situation where the type system was insufficient to
recognize that we were going to get into trouble. We can argue as to whether the operation of checking to
see whether the runtime type of the object to be put in the array is a subtype of the contents of the runtime
type of the array constitutes a “implicit downcast,” but ultimately Dan thinks it does, and he has the biggest
vote. My concern was that you knew what was happening, rather than worrying about what to call it.

Everybody rightly focused on the error conditions for part (c). I didn’t worry too much about the
formalism for describing what an array is and what it means to update it, because we all know what it
means to update the i’th element of an array, and we haven’t carefully delineated a formal model in class
(although we certainly could—we do have the mathematical machinery to do so if we wanted). I also focused
on the description of the ArrayStoreException rule, because that is the main point of the question.

The critical thing to recognize for part (c) is that the example program itself is a perfect example of why
we need runtime type information. Without it we could not implement the proper Java error behavior, so it
isn’t even necessary to exhibit a non-error piece of code to illustrate the requirement. It’s just as important
when implementing a language to adhere to the rules for error conditions as for correct programs.
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3 Strong evaluator interfaces

(a) let interpret1 e =

let _ = typecheck mt_ctxt e in

interpret mt_env e

(b) let state = ref []

let was_checked e =

let rec f l =

match l with

[] -> false

| hd::tl -> e==hd || f tl in

f (!state)

let typecheck2 e =

let ans = typecheck mt_ctxt e in

state := e::(!state);

ans

let interpret2 e =

if was_checked e

then interpret mt_env e

else raise TypeError

(c) let typecheck3 e =

let _ = typecheck mt_ctxt e in

fun () -> interpret mt_env e

(d) let typecheck4 e =

let _ = typecheck mt_ctxt e in

e

let interpret4 = interpret mt_env

(e) Only interpret1 is still safe. It is impossible for a client to mutate the expression in-between type-
checking and evaluation because control remains in the implementation. (By the way, it would likely
be unsafe in a shared-data preemptive multithreading situation.)

The others are all unsafe for the same basic reason, and the exploits are all essentially the same.
Typecheck one piece of code, mutate it somewhere inside the AST (which doesn’t change pointer-
equality for the root of the AST), and then execute the code as required by the interface. Thus the
list of checked programs in (b) is fooled because it uses pointer equality; the thunk in (c) doesn’t
help because the type-checked program bound up inside the thunk can still be mutated from outside
through the pointer; and the typesystem trick in (d) doesn’t help because the mutation is happening
at the level below the typesystem, where the object of type tcecp really is the same AST that can be
mutated.

Note that we could build an interface that would work, but we would need to copy the AST into private
memory (like an OS kernel might do), and give the client only a handle that is not a true pointer.

Dan’s adversary.ml looks like:

open Ast2

let make_app () = Apply(ref (Fun(‘‘x’’,Bool,Var ‘‘x’’)), True)

let change_app e =

match e with
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Apply(x,_) -> x := True

| _ -> ()

let break_b () =

let e = make_app () in

ignore(Impl2.typecheck2 e);

change_app e;

Impl2.interpret2 e

let break_c () =

let e = make_app () in

let f = Impl2.typecheck3 e in

change_app e;

f ()

let break_d () =

let e = make_app () in

let e2 = Impl2.typecheck4 e in

change_app e;

Impl2.interpret4 e2

let _ = break_b()

This particular version does not try to catch the exceptions and turn them into printed messages, so it
can only test one exploit at a time. You select which one by choosing one of the break_[b-d] functions
in the last line.

Note that I didn’t actually compile or run any of this code, which means that I didn’t worry about
whether your adversary.ml required any commenting/uncommenting to avoid name collisions when
testing the different parts. I basically just looked to see the form of the exploits.
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