Science of Computer Programming 8/2 (April 1987) Revised 6/21/88

Basic Polymorphic Typechecking

Luca Carddlli

AT&T Bell Laboratories, Murray Hill, NJ 07974
(current address: DEC SRC, 130 Lytton Ave, Palo Alto, CA 94301)

Introduction

Polymorphic means to havenany forms. As related to programming languages, it refers
to data or programs which have many types, or which operate on many types. There are
several arbitrary ways in which programs can have many types; we are mostly interested in ¢
particularly orderly form of polymorphism callguarametric polymorphism. This is a
property of programs which are parametric with respect totyjpe of some of their
identifiers. There are two major ways of achieving parametric polymorphism which are
conceptually related but pragmatically very different: explicit and implicit polymorphism.

Parametric polymorphism is callegplicit when parametrization is obtained by explicit
type parameters in procedure headings, and corresponding explicit applications of type
arguments when procedures are called. In this case, parametric polymorphism reduces to th
notion of having parameters of typee (without necessarily adopting the notion that
has itself typetype). Here is a definition of the polymorphic identity with explicit type
parameters (wher&un stands fom-abstraction) and its application to an integer and a
boolean:

let id = fun(t: type) fun(a: t) a

id(int)(3)
id(bool)(true)

Parametric polymorphism is calledhplicit when the above type parameters and type
applications are not admitted, but types can coryamvariables which are unknown, yet to
be determined, types. If a procedure parameter has a type variable or a term containing typ:
variables as its type, then that procedure can be applied to arguments of many different types
Here is the implicit version of the polymorphic identity (wheris a type variable), and its
application to an integer and a boolean.
letid = fun(a: a) a

id(3)
id(true)

Page 1

There is considerable interplay, both theoretical and practical, between explicit and
implicit polymorphism, and understanding either one can help understanding the other. This
paper is largely concerned with implicit polymorphism; it is nonetheless important to
dedicate the rest of this section to the relationships between the two kinds of parametric
polymorphism.

Implicit polymorphism can be considered as an abbreviated form of explicit
polymorphism, where the type parameters and applications have been omitted and must b
rediscovered by the language processor. Omitting type parameters leaves some type-denotir
identifiers unbound; and these are precisely the type variables. Omitting type arguments
requirestype inference to recover the lost information.

In fact, in implicit polymorphism one can totally omit type information by interpreting the
resulting programs as having type variables associated to parameters and identifiers. The
programs then appears to be type-free, but rigorous type-checking can still be performed.
This is one of the most appealing properties of implicit polymorphism, which makes it
particularly appealing for interactive systems and for naive users. Here is the type-free
definition of the polymorphic identity, where all the type information has been omitted.

letid = fun(a) a

Explicit polymorphism is more expressive, in that it can type programs which cannot be
typed by implicit polymorphism, but it is more verbose. In practice, even in explicit
polymorphism one may want to omit some type information, and this creates a grey region
between fully explicit and fully implicit polymorphism. In this grey region, the type-inference
techniques used for implicit polymorphism can be useful, and this is a good reason for
studying implicit polymorphism even in the context of explicit polymorphism. For example, a
reasonable compromise could be to adopt explicit-style function declarations, but then use
implicit-style function applications, using inference to recover the missing information:

let id = fun(t: type) fun(a: t) a

id(3)
id(true)

Implicit polymorphism can be understood in its own right, both at the semantic and type-
inference levels. But it is, in a sense, ambiguous: the same implicitly polymorphic program
may correspond to different explicitly polymorphic programs. This ambiguity can be critical
in some extensions of the basic type system, noticeably in presence of side-effects. Althougt
no critical ambiguities will arise in the context of this paper, an understanding of the relations
between implicit and explicit polymorphism may be necessary when extending implicit
polymorphic systems in certain ways.

Page 2

A bit of history

Polymorphic typing of programs was envisioned by Strachey; his lecture notes on
fundamental concepts in programming languages [Strachey 67] already contains much of the
notation and terminology used today.

Polymorphic types were already knowntgse schemas in combinatory logic [Curry 58].
Extending Curry's work, and collaborating with him, Hindley introduced the idea of a
principal type schema, which is the most general polymorphic type of an expression, and
showed that if a combinatorial term has a type, then it has a principal type [Hindley 69]. In
doing so, he used a result by Robinson about the existence of most general unifiers in the
unification algorithm [Robinson 64]. These results contained all the germs of polymorphic
typechecking, including the basic algorithms. The existence of principal types means that a
type inference algorithm will always compute a unique ‘best’ type for a program; moreover,
unification can be used to perform this computation. However, these results did not
immediately influence the programming language community, because of their theoretical
setting.

Influenced by Strachey, and independently from Hindley, Milner rediscovered many of
these ideas in the context of the LCF proof generation system [Gordon 79], which included
the first version of the ML language [Milner 84]. He introduced a crucial extension to
Hindley's work: the notion of generic and non-generic type variables, which is essential for
handling declarations of polymorphic functions. Milner implemented the first practical
polymorphic typechecker, and showed that the type system is sound [Milner 78]. More
recently, Milner and Damas proved the principal-type property for the extended system
[Damas 82] which implies that the type system is decidable. With minor refinements, this is
the state of the art exposed in the rest of this paper. This style of polymorphic typechecking
was soon adopted by Hope [Burstall 80], and more recently has been incorporated in othel
functional languages.

During that initial development of ML, it was found that the introduction of side-effects
made the type system unsafe [Gordon 79, p. 52]. This was resolved in a rather ad-hoc way
the situation was later improved by Damas, but the smooth merging of side-effects and
implicit polymorphic typechecking should still be considered an open problem.

Much theoretical work has followed. Coppo showed how to define a coherent type system
which is more flexible than ML's [Coppo 80], although the type system is undecidable. The
ideal model of types [MacQueen 84] is the model which more directly embodies the idea of
implicit polymorphic types, and has its roots in Scott, and in Milner's original paper.

Explicit polymorphism has also its own story, see [Bruce 84] for an extensive treatment
and references, and [Cardelli 86] for examples. The relations between implicit and explicit
polymorphism are actively being investigated, see for example [McCracken 84].

Page 3

Pragmatic motivation

Parametric polymorphic type systems share with Algol 68 properties of compile-time
checking, static typing and treatment of higher-order functions, but are more flexible in their
ability to define functions which work uniformly on arguments of many types.

Polymorphism in languages comes from the interaction of two contrasting programming
language design goals: static typing and reusability. Static typing is the ability to determine
the absence of certain classes of run-time faults by static inspection of a program. Static
typing is firmly established as a fundamental tool in building large, highly structured and
reliable software systems. Reusability is the ability to write routines for and open-ended
collection of applications; in particular, we may want to write routines which can be reused
when new data types are defined. Reusability is also an important aid in building large
programs, as it helps in defining abstractions and leads to better system structuring.

These design goals are in contrast as static typing tends to prevent reusability, and
reusable programs are not easy to check statically. A Pascal routine to sort integers cannot b
generalized to sort strings and other ordered sets, as the Pascal type system will not allow t
parametrize on the type of ordered sets. On the other hand, a Lisp routine to sort integers ca
be reused on many different kinds of ordered sets, but can also be misused on just about ar
data structure, with unpredictable results.

Polymorphic type systems try to reconcile these two goals by providing all the safety of
statically typed languages, and most (but not all) the flexibility of untyped languages. In this
paper we discuss Milner's polymorphic typechecking algorithm, which has proved very
successful: it is sound, efficient, and supports a very rich and flexible type system.

Great progress has been made recently in polymorphic languages, but one feature remair
unique to Milner's algorithm: its ability to infer types in the absence of type declarations. This
feature comes for free. In the attempt to deal with programs which can be reused on many
types, the algorithm searches for test (most abstract) type of a program. Such best type is
independent of type declarations, which can only be used to reduce the generality of the mos
abstract type.

This property makes Milner's algorithm particularly suitable for interactive languages
(ML itself is an interactive compiled language). Interactive users rarely have to bother writing
down type information, which is automatically inferred and checked. This strongly
contributes to ML's feel of care-free, quick-turnaround language, which is wrongly associated
only with interpretive, untyped languages.

The pragmatics of polymorphic typechecking has so far been restricted to a small group
of people. The only published description of the algorithm is the one in [Milner 78] which is
rather technical, and mostly oriented towards the theoretical background. In the hope of
making the algorithm accessible to a larger group of people, we present an implementation
(in the form of a Modula-2 program) which is very close to the one used in LCF, Hope and

Page 4

ML [Gordon 79, Burstall 80, Milner 84]. Although clarity has sometimes been preferred to
efficiency, this implementation is reasonably efficient and quite usable in practice for
typechecking large programs.

Only the basic cases of typechecking are considered, and many extensions to commot
programming language constructs are fairly obvious. The major non-trivial extensions which
are known so far (and not discussed here) concern overloading, abstract data types, exceptic
handling, updatable data, and labeled record and union types. Many other extensions ar
being studied.

We present two views of typing, as a system of type equations and as a type inference
system, and attempt to relate them informally to the implementation.

A simple applicative language

We do not deal here with ML directly, which is a full-size programming language,;
instead we considered a simple typedalculus with constants, constituting what can be
considered the kernel of the ML language. (The evaluation mechanism (call-by-name or call
by-value) is immaterial for the purpose of typechecking.)

The concrete syntax of expressions is given below, whierare identifiersExp are
expressionsbecl are declarations arfdn stands fon. All identifiers declared in the same
Decl must be distinct. The corresponding abstract syntax is given by theEypesidDecl
in the program in appendix (parsers and printers are not provided).

Exp ::=
Ide |
"if* Exp "then" Exp "else" Exp |
“fun" (" Ide)" Exp |
Exp (" Exp)" |
"let" Decl "in" Exp |
(" Exp)"

Decl ::=
Ide "="Exp |
Decl "then" Decl
"rec" Decl |
“(" Decl ")"

Data types can be introduced into the language simply by having a predefined set of
identifiers in the initial environment; this way there is no need to change the syntax or, more
importantly, the typechecking program when extending the language.

As an example, the following program defines the factorial function and applies it to zero,
assuming that the initial environment contains integer constants and operations:

Page 5

let rec factorial =
fun(n)
if zero(n)
then succ(0)
else times(n)(factorial(pred(n)))
in factorial(0)

Types

A type can be either a type variallep, etc., standing for an arbitrary type, or a type
operator. Operators likiet (integer type) andool (boolean type) are nullary type operators.
Parametric type operators like (function type) orx (cartesian product type) take one or
more types as arguments. The most general forms of the above operatorsaftne type
of any function) andr x g, (the type of any pair of values);andp can be replaced by
arbitrary types to give more specialized function and pair types. Types containing type
variables are callegolymorphic, while types not containing type variables axmomor phic.

All the types found in conventional programming languages, like Pascal, Algol 68 etc. are
monomorphic.

Expressions containing several occurrences of the same type variable, dike dn
express contextual dependencies, in this case between the domain and the codomain of
function type. The typechecking process consists in matching type operators and instantiating
type variables. Whenever an occurrence of a type variable is instantiated, all the other
occurrences of the same variable must be instantiated to the same value: legal instantiation
of a - a areint - int, bool - bool, (B xy) — (B xy), etc. This contextual instantiation process is
performed byunification, [Robinson 65] and is at the basis of polymorphic typechecking.
Unification fails when trying to match two different type operators (likandbool) or when
trying to instantiate a variable to a term containing that variable {li&eda - B, where a
circular structure would be built). The latter situation arises in typechecking self-application
(e.g.fun(x) x(x)), which is therefore considered illegal.

Here is a trivial example of typechecking. The identity functiionfun(x) x has typex -

a because it maps any type onto itself. In the expressi@rihe type ob (i.e.int) is matched
to the domain of the type af, yieldingint - int, as the specialized type lafin that context.
Hence the type ati(0) is the codomain of the type f which isint in this context.

In general, the type of an expression is determined by a set of type combination rules for
the language constructs, and by the types of the primitive operators. The initial type
environment could contain the following primitives for booleans, integers, pairs and lists
(where - is the function type operator,is cartesian product, atist is the list operator):

true, false : bool
0,1,... sint
succ, pred Jint - int
Zero ;int - bool

pair 1o~ (B - (axp))
Page 6

fst (axB) - a
snd (axB) - B

nil ;o list
cons s (o xa list) - a list
hd calist - a
tl calist - alist
null o list - bool

The typen list is the type of homogeneous list, whose elements all have type

The type oflength
Before describing the typechecking algorithm, let us discuss the type of a simple
recursive program which computes the length of a list:
let rec length =
fun(l)
if null(l)
then O

else succ(length(ti(l)))
in...

The type oflength is a list - int; this is a polymorphic type asngth can work on lists of
any kind. The way we deduce this type can be described in two ways. In principle,
typechecking is done by setting up a system of type constraints, and then solving it with
respect to the type variables. In practice, typechecking is done by a bottom-up inspection of
the program, matching and synthesizing types while proceeding towards the root; the type of
an expression is computed from the type of its subexpressions and the type constraints
imposed by the context, while the type of the predefined identifiers is already known and
contained in the initial environment. It is a deep property of the type system and of the
typechecking algorithm that the order in which we examine programs and carry out the
matching does not affect the final result and solves the system of type constraints.

The system of type constraints ferigth is:

[1] null o list - bool
[2] tt :Blist > Blist
[3] 0 sint
[4] succ Jint - int
[5] null(l) : bool
[6] 0 Y
[7] succ(length(tl(1))) Y
[8] if null(l) then 0 else succ(length(tl(l))) Y
[9] null 0 €
[10] I :9d
[11] null() ¢

Page 7

[12] t re-X
[13] ()
[14] tl(l) DX
[15] length in -1
[16] tl(l) n
[17] length(tl(l)) 1
[18] succ 1K - A
[19] length(tl(l)) DK
[20] succ(length(tl(l))) DA
[21] I T
[22] if null(l) then 0 else succ(length(tl(l))) Y

[23] fun(l) if null(l) then 0 else succ(length(ti(l))) B VRERRY)

[24] length : Tt
[25] fun(l) if null(l) then O else succ(length(ti(1))) ITI

Lines[1-4] express the constraints for the predefined global identifiers, which are already
known. The conditional construct imposgsg() that the result of a test must be boolean, and
the two branches of the conditional must have the sameytyg@ch is also the type of the
whole conditional expression. The four function applications in this program detgeroe
in each case the function symbol must have a functional types(e.g.in [9]); its argument
must have the same type as the domain of the functions(erg[10]), and the result must
have the same type as the codomain of the functione(e@L1]). Thefun expression23] has
a typeu - v, given that its parameter has typg1] and its body has type[22]. Finally the
definition construct imposes that the variable being defiredtif [24]) has the same type as
its definition[25].

Typecheckingength consists in (i) verifying that the above system of constraints is
consistent (e.g. it does not imphy = bool), and (ii) solving the constraints with respecitto
The expected type ¢dngth (=B list - int) can be inferred as follows:

=W -V by [25, 23]
p=q@= list by [21, 13, 12, 2]
v=y=int by [22, 8, 6, 3]

Considerably more work is needed to show that completely unconstrained, and that
the whole system is consistent. The typechecking algorithm described in the next section
systematically performs this work, functioning as a simple deterministic theorem prover for
systems of type constraints.

Here is a bottom-up derivation of the type lefigth which is closer to what the
typechecking algorithm really does; the consistency of the constraints (i.e. the absence ol
type errors) is also checked in the process:

[26] |8 by [10]

[27] null(l) : bool
€ = bool; & = a list; by[11,9, 1]

Page 8

[28] 0 :int

y=int; by [6, 3]
[29] ti) B list

o= Blist; x = Blist; B = a; by[26, 27, 12-14, 2]
[30] length(ti(l)) 1

n = list; by [15-17, 29]
[31] succ(length(tl(1))) sint

=K =int; by [18-20, 4, 30]
[32] if null(l) then 0 else succ(length(tl(l))) int by [5-8, 27, 28, 31]
[33] fun(l) if null(l) then O else succ(length(ti(l))) : B list— int

p =B list; v = int; by [21-23, 26, 27, 32]
[34] length :Blist - int

=B list= int; by [24-25, 33, 15, 30,

31]

Note that recursion is taken care of: the types of the two instaneesgtbfin the program
(the definition and the recursive function call) are compar¢ghin

Typechecking

The basic algorithm can be described as follows.

Case 1. When a new variable is introduced by &un binder, it is assigned a new type
variable a meaning that its type must be further determined by the context of its
occurrences. The paix,a> is stored in an environment which is searched every time an
occurrence ok, is found, yieldingx (or any intervening instantiation of it) as the type of
that occurrence.

Case 2. In a conditional, thef component is matched twol, and thethen andelse
branches are unified in order to determine a unique type for the whole expression.

Case 3. In an abstractiofun(x) e the type ot is inferred in a context whekeis associated
to a new type variable.

Case 4. In an applicatiori(a), the type of is unified against a type - B, wherea is the
type ofa andp is a new type variable. This implies that the typémist be a function
type whose domain is unifiable 29 g (or any instantiation of it) is returned as the type of
the whole application.

In order to describe the typecheckingenfexpressions, and of variables introducedeby
binders, we need to introduce the notiongerfieric type variables. Consider the following
expression:

fun(f) pair(f(3))(f(true)) [Ex1]

In Milner's type system this expression cannot be typed, and the algorithm described
above will produce a type error. In fact, the first occurrendaedefermines a typiet - g for

Page 9

f, and the second occurrence determines aldyge- g for f, which cannot be unified with
the first one.

Type variables appearing in the type afirebound identifier like are callechon-generic
because, as in this example, they are shared among all the occurremcasdotheir
instantiations may conflict.

One could try to find a typing fax1, for example by somehow assigninguit- B) - (B
x B); this would compute correctly in situations likel(fun(a) 0) whose result would be
pair(0)(0). However this typing is unsound in general: for examjplke has a type that
matchesu - B and it would be accepted as an argumemxioand wrongly applied toue.

There are sound extensions of Milner's type system which carmetypbut they are beyond
the scope of this discussion.

Hence there is a basic problem in typing heterogeneous occurrendé@sboiind
identifiers. Forbidding such occurrences turns out to be tolerable in practice because
expressions likex1 are not extremely useful or necessary and because a different mechanism
is provided. We are going to try and do better in typing heterogeneous occurrences of let
bound identifiers. Consider:

letf="fun(a) a [Ex2]
in pair(f(3))(f(true))

It is essential to be able to type the previous expression, otherwise no polymorphic
function could be applied to distinct types in the same context, making polymorphism quite
useless. Here we are in a better position thanbecause we know exactly whas, and we
can use this information to deal separately with its occurrences.

In this case has typex - a; type variables which, like, occur in the type of let-bound
identifiers (and that moreover do not occur in the typenatfosing fun-bound identifiers) are
calledgeneric, and they have the property of being able to assume different values for
different instantiations of the let-bound identifier. This is achieved operationally by making a
copy of the type of for every distinct occurrence bf

In making a copy of a type, however, we must be careful not to make a copy-of non
generic variables, which must be shared. The following expression for example is as illegal as
Ex1, and g has a non-generic type which propagatés to

fun(g) [Ex3]

letf=g
in pair(f(3))(f(true))

Again, it would be unsound to accept this expression with a typéalike) - (B x B)
(consider applyingucc so that it is bound tg).
The definition of generic variables is:

Page 10

A type variable occurring in the type of an expression e is generic
(with respect to e) iff it does not occur in the type of the binder of any
fun expression enclosing e.

Note that a type variable which is found to be non-generic while typechecking within a
expression may become generic outside it. This is the c&se mherea is assigned a non-
generica , andf is assigned - o wherea is now generic.

To determine when a variable is generic we maintain a list of the non-generic variables at
any point in the program: when a type variable is not in the list it is generic. The list is
augmented when enteringum; when leaving theun the old list automatically becomes the
current one, so that that type variable becomes generic. In copying a type, we must only copy
the generic variables, while the non-generic variables must be shared. In unifying a non
generic variable to a term, all the type variables contained in that term become non-generic.

Finally we have to consider recursive declarations:

letrecf=..f... in..f..

which are treated as if thec were expanded using a fixpoint operatajof type(a - o) -
a):

letf=Y(fun(f) ...f...)
in...f..

it is now evident that the instances of (the type variables in the typdarothe recursive
definition must be non-generic, while the instances folloviirage generic.

Case 5. Hence, to typecheck &t we typecheck its declaration part, obtaining an
environment of identifiers and types which is used in the typechecking of the body of the
let.

Case 6. A declaration is treated by checking all its definitions: t;, each of which
introduces a pakx; T;> in the environment, wherg is the type of,. In case of (mutually)
recursive declarations = t; we first create an environment containing paksa;> for all
the x; being defined, and where the are new non-generic type variables (they are
inserted in the list of non-generic variables for the scope of the declaration). Then;all the
are typechecked in that environment, and their typase again matched against the
(or their instantiations).

A digression on models, inference systems and algorithms

There are two basic approaches to the formal semantics of types. The most fundamenta
one is concerned with devising mathematical models for types, normally by mapping every

Page 11

type expression into a set of values (the values having that type); the basic difficulty here is in
finding a mathematical meaning for theoperator [Scott 76] [Milner 78] [MacQueen 84].

The other, complementary, approach is to define a formal system of axioms and inference
rules, in which it is possible to prove that an expression has some type. The relationship
between models and formal systems is very strong. A semantic model is often a guide in
defining a formal system, and every formal system should be self-consistent, which is often
shown by exhibiting a model for it.

A good formal system is one in which we can prove nearly everythinkhowe is true
(according to intuition, or because it is true in a model). Once a good formal system has beer
found, we canalmost forget the models, and work in the usually simpler, syntactic
framework of the system.

Typechecking is more strictly related to formal systems than to models, because of its
syntactic nature. A typechecking algorithm, in some sense, implements a formal system, by
providing a procedure for proving theorems in that system. The formal system is essentially
simpler and more fundamental than any algorithm, so that the simplest presentation of a
typechecking algorithm is the formal system it implements. Also, when looking for a
typechecking algorithm, it is better to first define a formal system for it.

Not all formal type systems admit typechecking algorithms. If a formal system is too
powerful (i.e. if we can prove many things in it), then it is likely to be undecidable, and no
decision procedure can be found for it. Typechecking is usually restricted to decidable type
systems, for which typechecking algorithms can be found. However in some cases
undecidable systems could be treated by incomplete typechdwkirigtics (this has never
been done in practice, so far), which only attempt to prove theorems in that system, but may
at some point give up. This could be acceptable in practice because there are limits to the
complexity of a program: its meaning could get out of hand long before the limits of the
typechecking heuristics are reached.

Even for decidable type systems, all the typechecking algorithms could be exponential,
again requiring heuristics to deal with them. This has been successfully attempted in Hope
[Burstall 80] for the treatment of overloading in the presence of polymorphism.

The following section presents an inference system for the kind of polymorphic
typechecking we have described. We have now two distinct views of typechecking: one is
solving a system of type equations, as we have seen in the previous sections, and the other is
proving theorems in a formal system, as we are going to see now. These views are
interchangeable, but the latter one seems to provide more insights because of its connectio
with type semantics on one side and algorithms on the other.

Page 12

An inference system

In the following inference system, the syntax of types is extended to type quaniifiers
1. In Milner's type system, all the type variables occurring in a type are intended to be
implicitly quantified at the top level. For exampte,- g is reallyOa. 0OB. a - B. However,
guantifiers cannot be nested inside type expressions.

A type is calledshallow if it has the formda;. ...0a,,. T wheren = 0 and no quantifiers
occur int. Our inference system allows the construction of non-shallow types: unfortunately
we do not have typechecking algorithms able to cope with them. Hence, we are only
interested in inferences which involve only shallow types. We have chosen to use type
guantifiers in the inference system because this helps explain the behavior of generic/non
generic type variables, which correspond exactly to free/quantified type variables. For a
slightly different inference system which avoids non-shallow types, see [Damas 82].

Here is the set of inference rulg¢®E] is an axiom scheme, while the other rules are
proper inferences. The horizontal bar readdies. An assumption x:t is the association of a
variablex with a typer. If A is a set of assumptions (uniquely mapping variables to types),
then A.xt is the same as except thak is associated with. If A and B are sets of
assumptions, and B ig:15. x,'T,,, then A.B is the set of assumptions£,. x,1,. The
notationA F e: t means that given a set of assumptimnae can deduce that the expression
has typer. The notatiora |- d:: B means that given a set of assumptisnwe can deduce that
the declarationi (introducing variableg; ... x,) determines a set of assumptiagof the
form xq:t4. ... xy:T,). Finally, the expressiotjo/a] is the result of substituting for all the
free occurrences afin .

[IDE] AX:TEF XT

AF ebool AFe:t Aleurt
[COND] gooooooooboooboooad
A (ifethen e else e"): 1

Ax:o F et
[ABS] oooooooooo
Al (fun(x)e)o -t

AFeo-1 Ak e:o
[COMB] goooooooooooo
Al e@)t

AFd:B ABF et
[LET] goooooooooo
Al (letdine): t

AFer

[GEN] oooooag (a not free inA)
Al e Oa.t

Page 13

AF eDat

[SPEC] 000000
A F e:t[o/d]
Al et
[BIND] goooooodao

AF (x=e): xT1)

AFd:B ABF d:B
[THEN] goooooooooooo
A F(dthend):: B.B'

AB I d:B
[REC] 00000000
Al (recd)::B

As a first example, we can deduce the most general type of the identity function:

(fun(x) x): Da. o - «

x:a F xa [IDE]
goooooodao
F (fun(x) x):a - «a [ABS]
gooodoooood
F (fun(x) x): Da. o - [GEN]

A specialized type for the identity function can be deduced either from the general type:
F (fun(x) x): Da. o -

gooodoooood
F (fun(x) x): int— int [SPEC]

or more directly:

x:int F x:int [IDE]
goooooooon
F (fun(x) x): int— int [ABS]

We can extend the above inference to slfomgx) x)(3): int:

3:int, x: int F x:int [IDE]
gooooooooooo
3:int F (fun(x) X): int— int [ABS] 3:int F 3:int [IDE]
goodoodoboooboouooouooooboooboooon
3:int F (fun(x) X)(3): int [COMB]

Here is an example offarbidden derivation using non-shallow types, which can be used
to give a type taun(x) x(x), which our algorithm is not able to type (hereda. a - a):

Xk x o [IDE]

gooooon
@ Fx¢@- ¢ [SPEC] x:@ F x:¢ [IDE]
godoboooooooooouooouooooon

X F x(x): o [COMB]

Page 14

gooooooooao
F (fun(x) x(x)): @ - @ [ABS]

Note howa. a - a gets instantiated t@la. a - a) - (Ja. a - a) by [SPEC], substitutingJa.
a - o fora.

We want to show now thakt f = fun(x) x in pair(f(3))(f(true))): int x bool. TakeA = : int, true:
bool, pair: Da.0B. o - (B - (o xB)) ande=0a.a - a.

Af:@F f¢ [IDE]
gooooood
Af @ Ffint - int [SPEC] Af @ F 3:int [IDE]
gddodobooboooooooooouoouoooo
Af @ F f(3): int [COMB]

Afok fo [IDE]
goooooooooda
Af @ Ff bool -~ bool [SPEC] Af: @ | true: bool [IDE]
gddodooodobooboouoodoooooooooooon
Af: @ F f(true): bool [COMB]

Af. @ F pair: Do.0B. o - (B — (axB)) [IDE]
O000oooooDoooooooo

Af @ F pair: OB. int - (B - (int x B)) [SPEC]
Oo0ooooooooooooooog
Af @ F pair:int - (bool - (int x bool)) [SPEC]

Af @ F pair:int - (bool - (int x bool)) fo F f3):int
gddodoooobooboouooooooooooon
Af: @ F pair(f(3)): bool - (int x bool) [COMB] Af @ F f(true): bool
gddodobooobooidodoboooooooooobooooooooobooo
Af: @ F pair(f(3))(f(true)): int x bool
[COMB]

A F (fun(x) x): @ Af @ F pair(f(3))(f(true)): int x bool
doooboboooooooobooooooooooooa
A (let f = fun(x) x in pair(f(3))(f(true))): int x bool [BIND] [LET]

Note that from the assumpti@ria.a - o, we can independently instantiatéo int and
bool; i.e., f has a generic type. Instead, (ian(f) pair(f(3))(f(true))) (fun(x) x), which is the
function- application version of the aboeeexpression, no shallow type can be deduced for
fun(f) pair(f(3))(f(true)).

A variable is generic if it does not appear in the type of the variables of any enalasing
binder. Those binders must occur in the set of assumptions, so that they can be later discarde
by [ABS] to create those enclosingy's. Hence a variable is generic if it does not appear in the
set of assumptions. Therefore, if a variable is generic, we can [@gNy and introduce a
guantifier. This determines a precise relation between generic variables and quantifiers.

Page 15

There is a formal way of relating the above inference system to the typechecking
algorithm presented in the previous sections. It can be shown that if the algorithm succeeds ir
producing a type for an expression, then that type can be deduced from the inference syster
(see [Milner 78] for a result involving a closely related inference system). We are now going
to take a different, informal approach to intuitively justify the typechecking algorithm. We
are going the show how an algorithm can be extracted from an inference system. In this view
a typechecking algorithm is @oof heuristic; i.e. it is a strategy to determine the order in
which the inference rules should be applied. If the proof heuristic succeeds, we have
determined that a type can be inferred. If it fails, however, it may still be possible to infer a
type. In particular our heuristic will be unable to cope with expressions which require some
non-shallow type manipulation, like in the deductionfaf(x) x(x))(fun(x) x): Da. a -~ a. In
fact, the heuristic will simply ignore type quantifier and treat all the type variables as free
variables.

There are two aspects to the heuristic. The first one is how to determine the sets of
assumptions, and the second is the order in which to apply the inference rules. If a languagt
requires type declarations for all identifiers, it is trivial to obtain the sets of assumptions,
otherwise we have to dgpe inference.

In carrying out type inferenceéun-bound identifiers are initially associated with type
variables, and information is gathered during the typechecking process to determine what the
type of the identifier should have been in the first place. Hence, we start with these initial
broad assumptions, and we build the proof by applying the inference rules in some order.
Some of the rules require the types of two subexpressions to be equal. This will not usually
be the case, so wmake them equal by unifying the respective types. This results in
specializing some of the types of the identifiers. At this point we can imagine repeating the
same proof, but starting with the more refined set of assumptions we have just determined:
this time the types of the two subexpressions mentioned above will come out equal, and we
can proceed.

The inference rules should be applied in an order which allows us to build the expression
we are trying to type from left to right and from the bottom up. For example, earlier we
wanted to show thatun(x) x):0a. a -~ a. Takex:a as our set of assumptions. To deduce the
type of(fun(x) x) bottom-up we start with the type xgfwhich we can obtain bybE], and then
we build up(fun(x) x) by [ABS].

If we proceed left to right and bottom-up then, with the exceptigaeN] and[SPEC], at
any point only one rule can be applied, depending on the syntactic construct we are trying to
obtain next. Hence the problem reduces to choosing when t@ESgand[SPEC]; this is
done in conjunction with theeT] rule. To simplify the discussion, we only consider the
following special case which can be derived by combiningLtiig and[BIND] rules.

Page 16

e"o0 Axol et
goooooooo

A
oog
F (letx=¢e'ine):t

|_

[LETBIND] O
A

Before applyindLETBIND], we deriveA + e': ' for someg' (refer to thgLETBIND] rule),
and then we apply all the possiit®EN] rules, obtaininga + e: o, whereo can be a
guantified type. Now we can start deriviag: o + e: 1, and every time we need to Usze]
for x ando is quantified, we immediately u$&PEC] to strip all the quantifiers, replacing the
guantifier variable by a fresh type variable. These new variables are then subject to
instantiation, as discussed above, which determines more refined ways g&BEITig

As an exercise, one could try to apply the above heuristic to infer the typetof and
observe how this corresponds to what the typechecking algorithm does in that case. Note hov
the list of non-generic variables corresponds to the set of assumptions and the application o
[GEN] and[SPEC] rules.

Conclusions and acknowledgements

This paper presented some of the pragmatic knowledge about polymorphic typechecking,
trying to relate it informally to the theoretical background. These ideas have been developed
by a number of people over a number of years, and have been transmitted to me by
discussions with Luis Damas, Mike Gordon, Dave MacQueen, Robin Milner and Ravi Sethi.

Page 17

References

[Bruce 84] K.B.Bruce, R.MeyefThe semantics of second order polymorphic lambda
calculus, in Semantics of Data Types, Lecture Notes in Computer Science 173, Springer-
Verlag, 1984. Also to appear under the same title together with J.C.Mitchell.

[Burstall 80] R.Burstall, D.MacQueen, D.Sannelldope: an Experimental Applicative
Language Proceedings of the 1980 LISP Conference, Stanford, August 1980, pp. 136
143.

[Cardelli 86] L.Cardelli, P.WegnerOn understanding types, data abstraction and
polymorphism, to appear ifComputing Surveys.

[Coppo 80] M.CoppoAn extended polymorphic type system for applicative languages
Lecture noted in Computer Science n.88, pp. 194-204, Springer-Verlag, 1980

[Curry 58] H.B.Curry, R.FeysCombinatory logic, North-Holland, Amsterdam, 1958.

[Damas 82] L.Damas, R.MilnePrincipal type-schemes for functional programs Proc.
POPL 82, pp.207-212.

[Girard 71] J-Y.Girard:Une extension de l'interprétation de Gddel a lI'analyse, et son
application a I'élimination des coupures dans l'analyse et la théorie des types
Proceedings of the second Scandinavian logic symposium, J.E.Fenstad Ed. pp. 63-92,
North-Holland, 1971.

[Gordon 79] M.J.Gordon, R.Milner, C.P.WadsworBdinburgh LCF, Lecture Notes in
Computer Science, No. 78, Springer-Verlag, 1979.

[Hindley 69] R.Hindley:The principal type scheme of an object in combinatory logic
Transactions of the American Mathematical Society, Vol. 146, Dec 1969, pp. 29-60.

[MacQueen 84a] D.B.MacQueen, G.D.Plotkin, R.Se#in: ideal model for recursive
polymorphic types, Proc. Popl 1984. Also to appear ihnformation and Control.

[McCracken 84] N.McCrackenThe typechecking of programs with implicit type
structure, in Semantics of Data Types, Lecture Notes in Computer Science n.173, pp.
301-316, Springer-Verlag 1984.

[Milner 78] R.Milner: A theory of type polymorphism in programming, Journal of
Computer and System Sciences, No. 17, 1978.

[Milner 84] R.Milner: A proposal for Standard ML, Proc. of the 1984 ACM Symposium on
Lisp and Functional Programming, Aug 1984.

[Robinson 65] J.A.Robinsos machine-oriented logic based on the resolution principle
Journal of the ACM, Vol 12, No. 1, Jan 1965, pp. 23-49.

[Scott 76] D.S.ScotiData types as latticesSIAM Journal of Computing, 4, 1976.

[Strachey 67] C.Stracheffundamental concepts in programming languagesecture notes
for theInternational Summer School in Computer Programming, Copenhagen, 1967

Page 18

Appendix: The program

The following Modula-2 program implements the polymorphic typechecking algorithm

The typesExp andDecl form the abstract syntax of our language. A type expressions
TypeExp can be a type variable or a type operator. A type variahl|jnstantiated when
itsi nst ance field isNI L, orinstantiated otherwise. An instantiated type variable behaves
like its instantiation. A type operator (likeol or) has a name and a list of type arguments
(none for bool, two for -.).

The functionPr une is used whenever a type expression has to be inspected: it will
always return a type expression which is either an uninstantiated type variable or a type
operator; i.e. it will skip instantiated variables, and will actually prune them from expressions
to remove long chains of instantiated variables.

The functionOccur sl nType checks whether a type variable occurs in a type
expression.

The typeNonGener i cVar s is the type of lists of non-generic variablEseshType
makes a copy of a type expression, duplicating the generic variables and sharing the non
generic ones.

The functionl sGener i ¢ checks whether a given variable occurs in a list of non-generic
variables. Note that a variables in such a list may bec instantiated to a type term, in which
case the variables contained in the type term are considered non-generic.

Type unification is now easily defined. Remember that when unifying a non-generic
variable to a term, all the variables in that term must become non-generic. This is handled
automatically by the lists of non-generic variables, as explained above. Hence, no special
code is needed in the unification routine.

Type environments are then defined. Note fRRatri eveTypeEnv always creates
fresh types; some of this copying is unnecessary and could be eliminated.

Finally we have the typechecking routine, which maintains a type environment and a list
of non-generic variables. Recursive declarations are handled in two passes. The first pas
Anal yzeRecDecl Bi nd simply creates a new set of non-generic type variables and
associates them with identifiers. The second pasal yzeRecDecl analyzes the
declarations and makes callslioi f yType to ensure the recursive type constraints.

The implementation modules fa@r r or Mod, Synbol Mod andPar seTr eeMbd are
not provided.

Page 19

(***)
(**************************** EFI NI TI G\l ’\mJLES ***************************)

(***)

(***)

DEFI NI TI ON MODULE Er r or Mod;
PROCEDURE Msg(nsg: ARRAY OF CHAR);
(* Print an error message *)

END Err or Mod.

(***)

DEFI NI TI ON MODULE Synbol Mod;
TYPE

| de;
PROCEDURE New(string: ARRAY OF CHAR): |de;
(* Create a newidentifier froma string *)
PROCEDURE Equal (idel, ide2: Ide): BOOLEAN;
(* Conpare two identifiers *)
END Synbol Mod.

(***)

DEFI NI TI ON MODULE Par seTr eeMbd;
I MPORT Synbol Mod;
FROM Synbol Mbd | MPORT | de;

TYPE
Exp = PO NTER TO ExpBase;
(* Parse tree for expressions *)

Decl = PO NTER TO Decl Base;
(* Parse tree for declarations *)

Expd ass = (ldeC ass, Condd ass, LanbC ass, Appl d ass, Bl ockd ass);

ExpBase = RECCRD
CASE cl ass: ExpC ass OF
| Ided ass: ide: Ide;
| Condd ass: test, ifTrue, ifFalse: Exp;
| LanbCl ass: binder: |de; body: Exp;
| Appl dass: fun, arg: Exp;
| Blockd ass: decl: Decl; scope: Exp;
END;
END;

Decl O ass = (Defd ass, SeqC ass, Recd ass);

Decl Base = RECORD
CASE cl ass: Decl d ass OF
| Defd ass: binder: |de; def: Exp;
| Seqd ass: first, second: Decl;
| Recd ass: rec: Decl;
END;
END;

(* Allocation routines for Exp and Decl *)

PROCEDURE Newi deExp(ide: |de): Exp;

PROCEDURE NewCondExp(test, ifTrue, ifFalse: Exp): Exp;
PROCEDURE NewLambExp(bi nder: 1de; body: Exp): Exp;

Page 20

PROCEDURE NewAppl Exp(fun, arg: Exp): Exp;
PROCEDURE NewBl ockExp(decl: Decl; scope: Exp): Exp;
PROCEDURE NewDef Decl (bi nder: 1de; def: Exp): Decl;
PROCEDURE NewSeqDecl (first, second: Decl): Decl;
PROCEDURE NewRecDecl (rec: Decl): Decl;

END Par seTr eeMbd.

(***)

DEFI NI TI ON MODULE TypeMbd;
I MPORT Synbol Mod;
FROM Synbol Mbd | MPORT | de;

TYPE
TypeExp = PO NTER TO TypeExpBase,;
(* The internal representation of type expressions *)

Typed ass = (Var Type, OperType);

TypeExpBase = RECORD
CASE cl ass: Typed ass OF
| VarType: instance: TypeExp;
| OperType: ide: lde; args: Typelist;
END;
END;

TypeLi st = PO NTER TO Typeli st Base;
TypeLi st Base = RECORD head: TypeExp; tail: TypeList; END;

PROCEDURE NewTypeVar (): TypeExp;

(* Allocate a new type variable *)

PROCEDURE NewTypeQOper (i de: |de; args: TypeList): TypeExp;

(* Allocate a new type operator *)

VAR
Enpty: Typelist;

(* The enpty type list *)

PROCEDURE Ext end(head: TypeExp; tail: TypeList): Typelist;

(* Allocate a new type list *)

PROCEDURE SaneType(typeExpl, typeExp2: TypeExp): BOOLEAN;

(* Conpare two types for identity (pointer equality) *)

PROCEDURE Prune(typeExp: TypeExp): TypeExp;

(* Elimnate redundant instantiated variables at the top of "typeExp";
The result of Prune is always a non-instantiated type variable or a
type operator *)

PROCEDURE Cccur sl nType(typeVar: TypeExp; typeExp: TypeExp): BOOLEAN,

(* Whether an uninstantiated type variable occurs in a type expression *)

PROCEDURE Cccur sl nTypeLi st (typeVar: TypeExp; list: Typelist): BOOLEAN,

(* Whether an uninstantiated type variable occurs in a list *)

PROCEDURE Uni f yType(typeExpl, typeExp2: TypeExp);

(* Unify two type expressions *)

PROCEDURE Uni fyArgs(listl, list2: Typelist);

(* Unify two lists of type expressions *)

END TypeMod.

(***)

DEFI NI TI ON MODULE Generi cVar Mod;

Page 21

| MPORT TypeMod,;
FROM TypeMod | MPORT TypeExp;

TYPE
NonCeneri cVars;
(* Lists of non-generic type variables and their instantiations *)

VAR
Enpty: NonGenericVars;
(* The empty list *)
PROCEDURE Ext end(head: TypeExp; tail: NonGenericVars): NonCenericVars;
(* Extend a list *)
PROCEDURE | sCeneric(typeVar: TypeExp; list: NonGenericVars): BOCLEAN,
(* Whether an uninstantiated type variable is generic wr.t. a list of
non-generic type variabl es *)
PROCEDURE FreshType(typeExp: TypeExp; list: NonGenericVars): TypeExp;
(* Make a copy of a type expression; the generic varibles are copied, while
the non-generic variables are shared *)

END Generi cVar Mod.

(***)

DEFI NI TI ON MODULE EnvMod;

| MPORT Synbol Mbd, TypeMod, GCeneri cVar Mod;
FROM Synbol Mod | MPORT | de;

FROM TypeMod | MPORT TypeExp;

FROM Generi cVar Mod | MPORT NonGeneri cVars;

TYPE
Env;
(* Environments associating type expressions to identifiers *)

VAR
Enmpty: Env;
(* The enpty environnent *)

PROCEDURE Extend(ide: |de; typeExp: TypeExp; tail: Env): Env;

(* Extend an environnent with an identifier-type pair *)

PROCEDURE Retrieve(ide: lde; env: Env; list: NonGenericVars): TypeExp;

(* Search for an identifier in an environnent and return a "fresh" copy of
the associated type (using GenericVar. FreshType). The identifier nust be
bound in the environnent *)

END EnvMod.

(***)

DEFI NI TI ON MODULE TypecheckMod;

| MPORT ParseTreeMd, TypeMbd, EnvMod, GCenericVar Mod;
FROM Par seTr eeMbd | MPORT Exp, Decl;

FROM TypeMod | MPORT TypeExp;

FROM EnvMbd | MPORT Env;

FROM Generi cVar Mod | MPORT NonGeneri cVars;

PROCEDURE Anal yzeExp(exp: Exp; env: Env; list: NonCenericVars): TypeExp;

(* Typecheck an expression w.r.t. an environment, and return its type *)

PROCEDURE Anal yzeDecl (decl: Decl; env: Env; list: NonGenericVars): Env;

(* Typecheck a declaration w.r.t an environment, and return an extended
envi ronment containing the types of the identifiers introduced by the
decl aration *)

Page 22

END TypecheckMod

Page 23

(***)

(************************* I '\/PLE'\/ENTATI O\I '\mJLES **************************)

(***)

(***)

| MPLEMENTATI ON MODULE TypeMod;
| MPORT Er r or Mod;

PROCEDURE NewTypeVar (): TypeExp;
VAR r: TypeExp;
BEG N
NEWr, VarType); r”~.class := VarType; r”~.instance := NL; RETURN r;
END NewTypeVar ;

PROCEDURE NewTypeQOper (i de: |de; args: TypeList): TypeExp;
VAR r: TypeExp;
BEG N
NEWr, OperType); r”~.class := QperType; r™.ide :=ide; r~.args := args;
r,
END NewTypeOper ;

PROCEDURE Ext end(head: TypeExp; tail: TypeList): Typelist;
VAR r: TypeLi st;
BEG N
NEWr); r”~.head := head; r~.tail :=tail; RETURN r;
END Ext end;

PROCEDURE SaneType(typeExpl, typeExp2: TypeExp): BOOLEAN;
BEG N RETURN typeExpl = typeExp2; END SaneType;

PROCEDURE Prune(typeExp: TypeExp): TypeExp;
BEG N
CASE typeExp”.cl ass OF
| Var Type:
I F typeExp”.instance = NIL THEN
RETURN t ypeExp;
ELSE
typeExp”.instance : = Prune(typeExp”.instance);
RETURN t ypeExp”. i nstance;
END;
| OperType: RETURN typeExp;
END;
END Prune;

PROCEDURE Cccur sl nType(typeVar: TypeExp; typeExp: TypeExp): BOOLEAN;
BEG N
typeExp : = Prune(typeExp);
CASE typeExp”.cl ass OF
| VarType: RETURN SaneType(typeVar, typeExp);
| OperType: RETURN QccurslnTypelist(typeVar, typeExp”.args);
END,;
END Cccur sl nType;

PROCEDURE Cccur sl nTypeLi st (typeVar: TypeExp; list: Typelist): BOOLEAN,
BEG N
IF list = NNL THEN RETURN FALSE END;
I F Cccursl nType(typeVar, list”. head) THEN RETURN TRUE END;
RETURN Cccur sl nTypelLi st (typeVar, list~. tail);

Page 24

RETURN

END Cccur sl nTypeli st ;

PROCEDURE Uni f yType(typeExpl, typeExp2: TypeExp);

BEG N
typeExpl : = Prune(typeExpl);
typeExp2 : = Prune(typeExp2);
CASE typeExpl”. cl ass OF
| Var Type:

I F QccurslnType(typeExpl, typeExp2) THEN
I F NOT SameType(typeExpl, typeExp2) THEN
Error Mod. Msg(" Type cl ash");
END;
ELSE
typeExpl”.instance : = typeExp2;
END;
| OperType:
CASE typeExp2”. cl ass OF
| VarType: UnifyType(typeExp2, typeExpl);
| Oper Type:
I F Synbol Mod. Equal (typeExpl”.ide, typeExp2”.ide) THEN
Uni fyArgs(typeExpl”. args, typeExp2”.args);
ELSE
Error Mod. Msg(" Type cl ash");
END;
END;
END;
END Uni fyType;

PROCEDURE Uni fyArgs(listl, list2: Typelist);

BEG N
IF (listl = Enpty) AND (list2 = Enpty) THEN RETURN; END;
IF (listl = Enpty) OR (list2 = Enpty) THEN
Error Mod. Msg(" Type cl ash");
ELSE
Uni fyType(list1”. head, |ist2”. head);
Uni fyArgs(listlnr. tail, list2h. tail);
END;

END Uni f yAr gs;

BEG N
Empty := NL;
END TypeMod.

(***)

| MPLEMENTATI ON MODULE Generi cVar Mod;
FROM TypeMod | MPORT Typed ass, Typeli st;

TYPE
NonGenericVars = Typeli st;

PROCEDURE Ext end(head: TypeExp; tail: NonGenericVars): NonCenericVars;
BEG N RETURN TypeMod. Ext end(head, tail); END Extend;

PROCEDURE | sCeneric(typeVar: TypeExp; list: NonGenericVars): BOCLEAN,
BEG N RETURN NOT TypeMbdd. Occur sl nTypelLi st (typeVar, list); END |IsCeneric;

TYPE
CopyEnv = PO NTER TO CopyEnvBase,;

Page 25

CopyEnvBase = RECORD ol d, new. TypeExp; tail: CopyEnv; END;

PROCEDURE Ext endCopyEnv(ol d, new. TypeExp; tail: CopyEnv): CopyEnv;
VAR r: CopyEnv;
BEG N
NEWr); r~.old :=old; r*.new:=new, r". tail :=tail; RETURN r;
END Ext endCopyEnv;

PROCEDURE FreshVar (typeVar: TypeExp; scan: CopyEnv; VAR env: CopyEnv): TypeExp;
VAR newTypeVar: TypeExp;
BEG N
IF scan = NIL THEN
newTypeVar : = TypeMd. NewTypeVar () ;
env : = ExtendCopyEnv(typeVar, newTypeVar, env);
RETURN newTypeVar ;
ELSI F TypeMd. SaneType(typeVar, scan”.old) THEN
RETURN scan”. new
ELSE
RETURN FreshVar (typeVar, scan”.tail, (*VAR*) env);
END,;
END FreshVar;

PROCEDURE Fresh(typeExp: TypeExp; list: NonCenericVars; VAR env: CopyEnv): TypeExp;
BEG N
typeExp : = TypeMod. Prune(typeExp);
CASE typeExp”. cl ass OF
| Var Type:
IF IsCeneric(typeExp, list) THEN
RETURN FreshVar (typeExp, env, (*VAR*) env)
ELSE
RETURN t ypeExp
END;
| Oper Type:
RETURN
TypeMbd. NewTypeOper (t ypeExp”. i de,
FreshLi st (typeExp”®.args, list, (*VAR*) env));
END;
END Fresh;

PROCEDURE FreshlLi st (args: TypelList; list: NonCGenericVars; VAR env: CopyEnv):

Typeli st ;
BEG N
I F args = TypeMd. Enpty THEN RETURN TypeMod. Enpty END;
RETURN
TypeMod. Ext end(Fresh(args”. head, list, (*VAR*) env),

FreshLi st (args™.tail, list, (*VAR*) env));
END FreshlLi st;

PROCEDURE FreshType(typeExp: TypeExp; list: NonGenericVars): TypeExp;
VAR env: CopyEnv;
BEG N env := NI L; RETURN Fresh(typeExp, list, (*VAR*) env); END FreshType;

BEG N

Enpty := TypeMod. Enpty;
END Generi cVar Mod.

(***)

| MPLEMENTATI ON MODULE EnvMbd;

Page 26

| MPORT Er r or Mod;

TYPE
Env = PO NTER TO EnvBase;
EnvBase = RECORD i de: |de; typeExp: TypeExp; tail: Env; END;

PROCEDURE Extend(ide: |de; typeExp: TypeExp; tail: Env): Env;
VAR r: Env;
BEG N
NEWr); r~.ide (= ide; r~. typeExp := typeExp; r~.tail :=tail; RETURN r;
END Ext end;

PROCEDURE Retrieve(ide: lde; env: Env; list: NonGenericVars): TypeExp;
BEG N
I F env = EnvMod. Enpty THEN
Error Mod. Msg(" Unbound i de");
RETURN NI L;
ELSI F Synbol Mod. Equal (i de, env”.ide) THEN
RETURN Ceneri cVar Mod. FreshType(env”. typeExp, list);
ELSE
RETURN Retrieve(ide, env™r.tail, list);
END;
END Retrieve;

BEG N
Empty := NL;
END EnvMbd.

(***)

| MPLEMENTATI ON MODULE TypecheckMbd;

I MPORT Synbol Mod;

FROM Par seTr eeMbd | MPORT Expd ass, Decl d ass;

FROM TypeMod | MPORT NewTypeVar, NewTypeOper, UnifyType, UnifyArgs;

VAR
Bool Type: TypeExp;

PROCEDURE FunType(dom cod: TypeExp): TypeExp;
BEG N
RETURN
NewTypeOper (Synbol Mod. New(" ->"),
TypehMbd. Ext end(dom TypeMod. Ext end(cod, TypeMd. Enpty)))
END FunType;

PROCEDURE Anal yzeExp(exp: Exp; env: Env; list: NonCenericVars): TypeExp;
VAR
typeOf Then, typeOFEl se, typeO Binder, typeO Body, typeO Fun, typeCfArg,
typeOf Res: TypeExp;
bodyEnv, decl Env: Env;
bodyLi st: NonGenericVars;
BEG N
CASE exp”.class OF
| 1ded ass: RETURN EnvMbd. Retrieve(exp”.ide, env, list);
| Condd ass:
Uni fyType(Anal yzeExp(exp”.test, env, list), Bool Type);
typeOf Then : = Anal yzeExp(exp”.ifTrue, env, list);
typeOf El se : = Anal yzeExp(exp”.ifFal se, env, list);
Uni fyType(typeOf Then, typeO El se);

Page

27

RETURN t ypeOf Then;

| Lanmbd ass:
typeO Bi nder : = NewTypeVar ();
bodyEnv : = EnvMod. Ext end(exp”. bi nder, typeO Bi nder, env);
bodyLi st := GenericVar Mod. Ext end(typeC Bi nder, list);
typeOf Body : = Anal yzeExp(exp”. body, bodyEnv, bodylList);
RETURN FunType(typeO Bi nder, typeO Body);

| Appl d ass:
typeOf Fun : = Anal yzeExp(exp”.fun, env, list);
typeOf Arg : = Anal yzeExp(exp”.arg, env, list);

typeOf Res : = NewTypeVar();
Uni fyType(typeOf Fun, FunType(typeOfArg, typedf Res));
RETURN t ypeOf Res;

| Bl ockd ass:
decl Env : = Anal yzeDecl (exp”. decl, env, list);
RETURN Anal yzeExp(exp”.scope, decl Env, list);

END;

END Anal yzeExp;

PROCEDURE Anal yzeDecl (decl: Decl; env: Env; list: NonGenericVars): Env;
BEG N
CASE decl ~. cl ass OF
| Defd ass:
RETURN
EnvMbd. Ext end(decl . bi nder, Anal yzeExp(decl . def, env, list), env);
| Seqd ass:
RETURN
Anal yzeDecl (decl ~. second, Anal yzeDecl (decl ™. first, env, list), list);
| Recd ass:
Anal yzeRecDecl Bi nd(decl . rec, (*VAR*) env, (*VAR*) list);
Anal yzeRecDecl (decl ~.rec, env, list);
RETURN env;
END,;
END Anal yzeDecl ;

PROCEDURE Anal yzeRecDecl Bi nd(decl: Decl; VAR env: Env; VAR |list: NonGenericVars);
VAR newTypeVar: TypeExp;
BEG N
CASE decl ~. class OF
| Defd ass:
newTypeVar : = NewTypeVar ();
env : = EnvMbd. Ext end(decl ~. bi nder, newTypeVar, env);
list := GenericVarMd. Ext end(newTypeVar, |ist);
| Seqd ass:
Anal yzeRecDecl Bi nd(decl~. first, (*VAR) env, (*VAR*) list);
Anal yzeRecDecl Bi nd(decl ~. second, (*VAR) env, (*VAR*) list);
| Recd ass: Anal yzeRecDecl Bi nd(decl ~.rec, (*VAR) env, (*VAR*) list);
END;
END Anal yzeRecDecl Bi nd;

PROCEDURE Anal yzeRecDecl (decl: Decl; env: Env; list: NonCenericVars);
BEG N
CASE decl ~. class OF
| Defd ass:
Uni fyType(EnvMod. Ret ri eve(decl ~. bi nder, env, list),
Anal yzeExp(decl ~. def, env, list));
| Seqd ass:
Anal yzeRecDecl (decl . first, env, list);

Page 28

Anal yzeRecDecl (decl . second, env, list);
| RecCd ass: Anal yzeRecDecl (decl”~.rec, env, list);
END;
END Anal yzeRecDecl ;

BEG N

Bool Type : = NewTypeQper (Synbol Mod. New("bool "), TypeMod. Enpty);
END TypecheckMbd.

Page 29

