
Formal Semantics Review Problems

CSE505

November 8, 2001

In this exercise, you are going to add lists to the call-by-value simply-typed lambda calculus (with booleans). A
list is defined recursively as either the value nil or the value (cons �������), where ��� is itself a list. For example, the list
consisting of the booleans true, false, and true (in that order) would be represented by the following list value:

(cons true (cons false (cons true nil
�
Bool �)))

The above list value has type Bool List. The value nil is annotated with the element type expected for this occurrence
of the empty list. This annotation is necessary so that the type system doesn’t have to “guess” the correct type of an
empty list. The new primitives head and tail access the first and second components of a cons cell, respectively.

The new cases of the language’s syntax are as follows:� ::= 	
	�	
wrong ��
nil

� ��
cons �������
head �
tail �

 ::= 	
	�	
 List

The expression denoted wrong �� is a new value that is used to represent errors that will not be prevented by the
static type system and can therefore not be considered stuck. In particular, the type system will not ensure that head
and tail are always invoked on a non-empty list. The expression wrong is annotated with a type so that the type system
does not need to “guess” it (see the typing rule T-Wrong below).

1 Values

Show the new cases of the grammar for values. I’ve provided one of them.
I would accept this grammar:� ::= 	�	
	

wrong ��
nil

� ��
cons � � � �

I would also accept this one:� ::= 	�	
	
wrong ���

�
::= nil

� ��
cons � �

1

2 Operational Semantics

Show the new rules of the operational semantics. I’ve provided the rules for head; you should add the other rules.

������� ��� �
cons ����������� cons ��� � ��� (E-Cons1)

������� ����
cons � � � � ��� cons � � ���� (E-Cons2)

����� � �
head ����� head ��� (E-Head)

head nil
� �� ��� wrong �� (E-HeadNil)

head
�
cons � � � ��	 ��� � � (E-HeadCons)

����� ���
tail ����� tail ��� (E-Tail)

tail nil
� �� �
� wrong �� List

(E-TailNil)

tail
�
cons � � � ��	 �
� � � (E-TailCons)

Technically, we also need the following rules, to handle reductions involving the “wrong” value:

head
�
wrong �� List 	 �
� wrong �� (E-HeadWrong)

tail
�
wrong �� List 	 ��� wrong � List

(E-TailWrong)

In addition, we should also add rules to handle the appearance of “wrong” in other parts of the syntax. For example,
we should add an E-AppWrong rule to handle the case when the function value in a function call ends up being the
“wrong” value. This is annoying, because it means we also have to revisit the cases of the proof involving function
applications, to make sure this new rule is safe. A similar thing would be required for the if expression. I ignore these
extra rules here for simplicity.

3 Typing Rules

Show the new typing rules. I’ve provided the rules for wrong and head; you should add the rules for nil, cons and tail.

�� �
wrong �� 	 �� (T-Wrong)

��
nil

� �� �� List
(T-Nil)

2

� ��� �� �� ��� �� List��
cons � � � � � List

(T-Cons)

�� � �� List��
head � �� (T-Head)

�� � �� List��
tail � �� List

(T-Tail)

4 Type Soundness

a. State (no proof necessary) any new parts of the Canonical Forms lemma that are necessary in the proofs below.

Lemma (Canonical Forms): If
�� � �� List, then � has the form nil

� �� , (cons � � � �), or (wrong: List).

b. Add the relevant cases to the proof of the Progress theorem. I’ve provided the cases for wrong and head; you
should add the cases for nil, cons and tail.

Theorem (Progress): If
 � � , then either � is a value or there exists � � such that � ��� � � .

� Case T-Wrong: Then ��� wrong �� , so � is a value.
� Case T-Nil: Then ��� nil

� � � , so � is a value.
� Case T-Cons: Then ��� cons � ����� and � � List and

 ��� � � and
� ��� � � List. By the inductive

hypothesis, we have that either � � is a value or there exists � � � such that ����� � ��� � . Similarly, either � � is a
value or there exists � �� such that � ����� � �� . We perform a case analysis on these possibilities:

– Case there exists ��� � such that ����� � ��� � : Then by E-Cons1 we have
�
cons � � ��� 	 ��� �

cons ��� � ��� 	 .
– Case ��� is a value � � : There are two sub-cases.

� Case there exists ���� such that ��� ��� ���� : Then by E-Cons2 we have (cons ��� � �) ��� (cons� � ����).
� Case ��� is a value � � : Then ��� �

cons � ����� 	 , so � is a value.
� Case T-Head: Then ��� (head � �) and

 � � � List. By the inductive hypothesis, � � is either a value or
there exists ��� � such that � � � � ��� � . In the latter case, by E-Head we have (head � �) � � (head � � �). In the
former case, by the Canonical Forms Lemma (assuming you wrote it properly) we have that � � is either
nil

� �� , (cons � �����), or (wrong: List). If ��� is nil
� �� , then by E-HeadNil we have � � � wrong � . If � �

has the form (cons � � ���), then by E-HeadCons we have � � � � � . If ��� has the form (wrong: List), then
by E-HeadWrong we have � �
� wrong � .

� Case T-Tail: Then ��� (tail � �) and � � List and
 � � � � List. By the inductive hypothesis, � � is

either a value or there exists � � � such that ������� ��� � . In the latter case, by E-Tail we have (tail � �) � � (tail��� �). In the former case, by the Canonical Forms Lemma we have that � � is either nil
� � � , (cons � �����), or

(wrong: � List). If ��� is nil
� � � , then by E-TailNil we have � ��� wrong �� � List. If ��� has the form (cons� � ���), then by E-TailCons we have � ��� � � . If ��� has the form (wrong: � List), then by E-HeadWrong

we have � � � wrong � � List.

c. Add the relevant cases to the proof of the Type Preservation theorem. I’ve provided the cases for wrong and
head; you should add the cases for nil, cons and tail.

Theorem (Type Preservation): If
�� � �� and � ��� � � , then

�� ��� �� .

3

� Case T-Wrong: Then ��� wrong �� . By inspection, there is no � � such that wrong �� �
� ��� (assuming
you didn’t add such a rule), so this case is satisfied trivially.

� Case T-Nil: Then ��� nil
� � � . By inspection, there is no � � such that nil

� � � ��� ��� , so this case is satisfied
trivially.

� Case T-Cons: Then � � cons � � � � and � � List and
� � � � � and

� � � � � List. We’re given
that � ��� ��� . Case analysis of the last rule used in the derivation of this reduction step:

– Case E-Cons1: Then � � � cons � � � � � and � � ��� � � � . By the inductive hypothesis we have that�� ��� � �� � . Therefore, by T-Cons we have
��

cons � � � ��� �� .

– Case E-Cons2: Then � � � cons � � ���� and � � ��� ���� . By the inductive hypothesis we have that�� ���� �� � List. Therefore, by T-Cons we have
��

cons � � ���� �� .
� Case T-Head: Then ��� (head � �) and

�� ��� �� List. We’re given that � �
� ��� . Case analysis of the last
rule used in the derivation of this reduction step:

– Case E-Head: Then � � � head ��� � and � � ��� ��� � . By the inductive hypothesis we have that
� � � � �

 List. Therefore, by T-Head we have
�� � � � .

– Case E-HeadNil: Then � � � nil
� � � and ��� � wrong � � . Since

� � � � List, by T-Nil (assuming
you wrote it properly) we have that � � . Then by T-Wrong we have

�� �
wrong � 	 �� .

– Case E-HeadCons: Then � � � �
cons � � � ��	 and ��� � � � . Since

� � � � List, by T-Cons (assuming
you wrote it properly) we have that

�� � � �� .

– Case E-HeadWrong: Then � ��� wrong � � List and ��� � wrong � � . Since
� ��� � List, by

T-Wrong we have � � , so again by T-Wrong we have
�� �

wrong �� 	 �� .
� Case T-Tail: Then � � (tail � �) and � � List and

� � � � � List. We’re given that � ��� � � . Case
analysis of the last rule used in the derivation of this reduction step:

– Case E-Tail: Then � � � tail ��� � and ��� �
� ��� � . By the inductive hypothesis we have that
� � � � �

 � List. Therefore, by T-Tail we have
� � � � .

– Case E-TailNil: Then ��� � nil
� � � � and ��� � wrong � � � List. Since

� ��� � � List, by T-Nil we
have that � � � � . Then by T-Wrong we have

�� �
wrong �� � List 	 �� � List.

– Case E-TailCons: Then � � � �
cons � � � ��	 and � � � � � . Since

� � � � � List, by T-Cons we have
that

�� ��� �� � List.

– Case E-TailWrong: Then � � � wrong �� � � List and ��� � wrong �� � � List. Since
�� � � �� � List, by

T-Wrong we have that � � � � . Then by T-Wrong we have
�� �

wrong � � List 	 �� � List.

4

