Simply-typed Lambda Calculus

Todd Millstein

November 5, 2001

This document formally defines the call-by-value simply-typed lambda calculus (with booleans) and provides a proof of type soundness. It is meant only as a reference, and assumes familiarity with the basic notions involved.

Syntax 1

The metavariable x ranges over an infinite set of variable names. The metavariable e ranges over expressions (terms). The metavariable T ranges over types. The metavariable v ranges over values.

e ::= $x \mid \lambda x : T.e \mid e_1 \mid e_2$ true | false | if e_1 then e_2 else e_3 T::= Bool $|T_1 \rightarrow T_2|$ v ::= $\lambda x : T \cdot e \mid \text{true} \mid \text{false}$

Operational Semantics 2

2.1 Substitution

The substitution function is defined below. We assume that renaming of bound variables is applied as necessary to make the side conditions of the third case hold.

 $\begin{aligned} [x \mapsto e]x \\ [x \mapsto e]x' \\ [x \mapsto e](\lambda x' : T' \cdot e') \\ [x \mapsto e](e_1 \ e_2) \\ [x \mapsto e]true \\ [x \mapsto e]false \end{aligned} = \begin{aligned} x' \\ = \lambda x' : T' \cdot [x \mapsto e]e' \\ = \lambda x' : T' : T' : T' \cdot [x \mapsto e]e' \\ = \lambda x' : T' : T' : T' : T'$ if $x \neq x'$ if $x \neq x'$ and x' not free in e $[x \mapsto e]$ if e_1 then e_2 else $e_3 = if [x \mapsto e]e_1$ then $[x \mapsto e]e_2$ else $[x \mapsto e]e_3$

2.2 Inference Rules

The notation $e \longrightarrow e'$ means "expression e evaluates to e' in one step."

(E Amp Dad)

$$\frac{e_{1} \longrightarrow e_{1}'}{(\lambda x: T.e)v \longrightarrow [x \mapsto v]e} (E-AppRed)$$

$$\frac{e_{1} \longrightarrow e_{1}'}{e_{1} e_{2} \longrightarrow e_{1}' e_{2}} (E-App1)$$

$$\frac{e \longrightarrow e_{1}'}{v e \longrightarrow v e_{1}'} (E-App2)$$

$$\frac{e_{1} \longrightarrow e_{1}'}{if e_{1} then e_{2} else e_{3} \longrightarrow e_{3}} (E-IfFalse)$$

$$\frac{e_{1} \longrightarrow e_{1}'}{if e_{1} then e_{2} else e_{3} \longrightarrow if e_{1}' then e_{2} else e_{3}} (E-IfFalse)$$

2.3 Stuck Expressions

An expression e is *stuck* if it is not a value but there is no e' such that $e \rightarrow e'$. The stuck expressions can be thought of as the set of possible run-time "type" errors. The grammar of stuck expressions is as follows:

stuck ::= xstuck $e \mid \text{true } v \mid \text{false } v$ v stuck if stuck then e_2 else e_3 if $\lambda x : T \cdot e$ then e_2 else e_3

3 Typechecking Rules

The metavariable Γ represents a *type environment*, which is a set of (variable name, type) pairs. Each pair with variable name x and type T is denoted x : T. We assume that a type environment has at most one pair for a given variable name; this can always be ensured via renaming of bound variables. If $\Gamma = \{x_1 : T_1, \ldots, x_n : T_n\}$, then we define dom $(\Gamma) = \{x_1, \ldots, x_n\}$.

A judgement of the form $\Gamma \vdash e : T$ means "expression e has type T under the typing assumptions in Γ ." If the Γ component is missing from a judgement, the type environment is assumed to be the empty set.

$$\frac{x:T \in \Gamma}{\Gamma \vdash x:T} \text{ (T-Var)} \qquad \qquad \overline{\Gamma \vdash \text{true}:\text{Bool}} \text{ (T-True)}$$

$$\frac{\Gamma \cup \{x:T_1\} \vdash e:T_2}{\Gamma \vdash (\lambda x:T_1.e):T_1 \to T_2} \text{ (T-Abs)} \qquad \qquad \overline{\Gamma \vdash \text{false}:\text{Bool}} \text{ (T-False)}$$

$$\frac{\Gamma \vdash e_1:T_2 \to T \quad \Gamma \vdash e_2:T_2}{\Gamma \vdash e_1:e_2:T} \text{ (T-App)} \qquad \qquad \frac{\Gamma \vdash e_1:\text{Bool} \quad \Gamma \vdash e_2:T \quad \Gamma \vdash e_3:T}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3:T} \text{ (T-If)}$$

4 Type Soundness

Lemma (Canonical Forms):

- a. If $\Gamma \vdash v : T_1 \to T_2$ then v has the form $\lambda x : T_1.e$.
- b. If $\Gamma \vdash v$: Bool then v is either true or false.

Proof: Immediate from rules T-Abs, T-True, and T-False, and the fact that no other typing rules apply to values.

Theorem (Progress): If $\vdash e : T$, then either e is a value or there exists e' such that $e \longrightarrow e'$ (equivalently, If $\vdash e : T$, then e is not stuck).

Proof: By (strong) induction on the depth of the derivation of $\vdash e : T$. Case analysis of the last rule in the derivation:

- Case T-Var: Then e = x and $x : T \in \emptyset$, so we have a contradiction. Therefore, T-Var cannot be the last rule in the derivation.
- Case T-Abs: Then $e = \lambda x : T_1 \cdot e_1$, so *e* is a value.
- Case T-App: Then $e = e_1 e_2$ and $\vdash e_1 : T_2 \to T$ and $\vdash e_2 : T_2$. By the inductive hypothesis, we have that either e_1 is a value or there exists e'_1 such that $e_1 \to e'_1$. Similarly, either e_2 is a value or there exists e'_2 such that $e_2 \to e'_2$. We perform a case analysis on these possibilities:

- Case there exists e'_1 such that $e_1 \longrightarrow e'_1$: Then by E-App1 we have $e_1 e_2 \longrightarrow e'_1 e_2$.
- Case e_1 is a value v_1 : There are two sub-cases.
 - * Case there exists e'_2 such that $e_2 \longrightarrow e'_2$: Then by E-App2 we have $v_1 e_2 \longrightarrow v_1 e'_2$.
 - * Case e_2 is a value v_2 : Since $\vdash e_1 : T_2 \to T$ and e_1 is a value v_1 , by the Canonical Forms lemma we have that e_1 has the form $\lambda x : T'.e_3$. Therefore by E-AppRed we have $(\lambda x : T'.e_3)v_2 \longrightarrow [x \mapsto v_2]e_3$.
- Case T-True: Then e =true, so e is a value.
- Case T-False: Then e =false, so e is a value.
- Case T-If: Then $e = \text{if } e_1$ then e_2 else e_3 and $\vdash e_1$: Bool and $\vdash e_2$: T and $\vdash e_3$: T. By the inductive hypothesis, we have that either e_1 is a value, or there exists e'_1 such that $e_1 \longrightarrow e'_1$. In the latter case, by E-If we have that if e_1 then e_2 else $e_3 \longrightarrow$ if e'_1 then e_2 else e_3 . In the former case, by the Canonical Forms lemma we have that e_1 is either true or false. If e_1 is true, then by E-IfTrue we have that if e_1 then e_2 else $e_3 \longrightarrow e_2$. If e_1 is false, then by E-IfFalse we have that if e_1 then e_2 else $e_3 \longrightarrow e_3$.

Lemma (Weakening): If $\Gamma \vdash e : T$ and $x_0 \notin \text{dom}(\Gamma)$, then $\Gamma \cup \{x_0 : T_0\} \vdash e : T$. **Proof**: By (strong) induction on the depth of the derivation of $\Gamma \vdash e : T$. Case analysis of the last rule in the derivation:

- Case T-Var: Then e = x and $x : T \in \Gamma$. Since $x_0 \notin \text{dom}(\Gamma)$, we have that $x_0 \neq x$. Therefore $x : T \in \Gamma \cup \{x_0 : T_0\}$, so by T-Var we have $\Gamma \cup \{x_0 : T_0\} \vdash x : T$.
- Case T-Abs: Then $e = \lambda x_1 : T_1 \cdot e_2$ and $T = T_1 \to T_2$ and $\Gamma \cup \{x_1 : T_1\} \vdash e_2 : T_2$. We assume that $x_1 \neq x_0$, renaming x_1 if necessary. Since $x_0 \notin \operatorname{dom}(\Gamma)$, also $x_0 \notin \operatorname{dom}(\Gamma \cup \{x_1 : T_1\})$. Therefore by the inductive hypothesis we have $\Gamma \cup \{x_1 : T_1\} \cup \{x_0 : T_0\} \vdash e_2 : T_2$. So by T-Abs we have $\Gamma \cup \{x_0 : T_0\} \vdash (\lambda x_1 : T_1 \cdot e_2) : T_1 \to T_2$.
- Case T-App: Then $e = e_1 e_2$ and $\Gamma \vdash e_1 : T_2 \to T$ and $\Gamma \vdash e_2 : T_2$. By the inductive hypothesis we have $\Gamma \cup \{x_0 : T_0\} \vdash e_1 : T_2 \to T$ and $\Gamma \cup \{x_0 : T_0\} \vdash e_2 : T_2$, so by T-App we have $\Gamma \cup \{x_0 : T_0\} \vdash e_1 e_2 : T$.
- Case T-True: Then e = true and T = Bool. Therefore by T-True we have $\Gamma \cup \{x_0 : T_0\} \vdash$ true : Bool.
- Case T-False: Then e = false and T = Bool. Therefore by T-False we have $\Gamma \cup \{x_0 : T_0\} \vdash \text{false}$: Bool.
- Case T-If: Then $e = \text{if } e_1$ then e_2 else e_3 and $\Gamma \vdash e_1$: Bool and $\Gamma \vdash e_2$: T and $\Gamma \vdash e_3$: T. By the inductive hypothesis we have $\Gamma \cup \{x_0 : T_0\} \vdash e_1$: Bool and $\Gamma \cup \{x_0 : T_0\} \vdash e_2$: T and $\Gamma \cup \{x_0 : T_0\} \vdash e_3$: T, so by T-If we have $\Gamma \cup \{x_0 : T_0\} \vdash \text{if } e_1$ then e_2 else e_3 : T.

Lemma (Substitution): If $\Gamma \cup \{x : T\} \vdash e' : T'$ and $\Gamma \vdash v : T$, then $\Gamma \vdash [x \mapsto v]e' : T'$. **Proof**: By (strong) induction on the depth of the derivation of $\Gamma \cup \{x : T\} \vdash e' : T'$. Case analysis of the last rule in the derivation:

- Case T-Var: Then e' = x' and $x' : T' \in \Gamma \cup \{x : T\}$. There are two subcases:
 - Case x' = x: Then $[x \mapsto v]e' = [x \mapsto v]x = v$. Since we assume that $\Gamma \cup \{x : T\}$ has at most one element for each variable name, we have that T' = T. Finally, since $\Gamma \vdash v : T$, this case is proven.
 - Case $x' \neq x$: Then $[x \mapsto v]e' = x'$. Since $x' : T' \in \Gamma \cup \{x : T\}$ and $x' \neq x$, we have $x' : T' \in \Gamma$. Therefore by T-Var we have $\Gamma \vdash x' : T'$.

- Case T-Abs: Then $e' = \lambda x_0 : T_0 \cdot e_1$ and $T' = T_0 \to T_1$ and $\Gamma \cup \{x : T\} \cup \{x_0 : T_0\} \vdash e_1 : T_1$. Since $\Gamma \vdash v : T$, by Weakening (renaming x_0 if necessary) we have $\Gamma \cup \{x_0 : T_0\} \vdash v : T$, so by the inductive hypothesis we have $\Gamma \cup \{x_0 : T_0\} \vdash [x \mapsto v]e_1 : T_1$. Therefore by T-Abs we have $\Gamma \vdash \lambda x_0 : T_0 \cdot [x \mapsto v]e_1 : T_0 \to T_1$. Since we can assume that $x \neq x_0$ and x_0 not free in v, performing renaming as necessary, we have $[x \mapsto v]e' = \lambda x_0 : T_0 \cdot [x \mapsto v]e_1$, so the result follows.
- Case T-App: Then $e' = e_1 e_2$ and $\Gamma \cup \{x : T\} \vdash e_1 : T_2 \to T'$ and $\Gamma \cup \{x : T\} \vdash e_2 : T_2$. Then by the inductive hypothesis we have $\Gamma \vdash [x \mapsto v]e_1 : T_2 \to T'$ and $\Gamma \vdash [x \mapsto v]e_2 : T_2$, so by T-App we have $\Gamma \vdash [x \mapsto v]e_1 : [x \mapsto v]e_2 : T'$. Since $[x \mapsto v](e_1 e_2) = [x \mapsto v]e_1 : [x \mapsto v]e_2$, the result follows.
- Case T-True: Then e' = true and T' = Bool. Then by T-True we have $\Gamma \vdash$ true : Bool. Since $[x \mapsto v]$ true = true, the result follows.
- Case T-False: Then e' = false and T' = Bool. Then by T-False we have $\Gamma \vdash$ false : Bool. Since $[x \mapsto v]$ false = false, the result follows.
- Case T-If: Then $e' = \text{if } e_1$ then e_2 else e_3 and $\Gamma \cup \{x : T\} \vdash e_1$: Bool and $\Gamma \cup \{x : T\} \vdash e_2 : T'$ and $\Gamma \cup \{x : T\} \vdash e_3 : T'$. By the inductive hypothesis we have $\Gamma \vdash [x \mapsto v]e_1$: Bool and $\Gamma \vdash [x \mapsto v]e_2 : T'$ and $\Gamma \vdash [x \mapsto v]e_3 : T'$. Since $[x \mapsto v]$ if e_1 then e_2 else $e_3 = \text{if } [x \mapsto v]e_1$ then $[x \mapsto v]e_2$ else $[x \mapsto v]e_3$, the result follows.

Theorem (Type Preservation): If $\Gamma \vdash e : T$ and $e \longrightarrow e'$, then $\Gamma \vdash e' : T$. **Proof**: By (strong) induction on the depth of the derivation of $\Gamma \vdash e : T$. Case analysis of the last rule in the derivation:

- Case T-Var: Then e = x. By inspection of the operational semantics, there is no e' such that x → e', so this case is satisfied trivially.
- Case T-Abs: Similar to the previous case.
- Case T-App: Then $e = e_1 e_2$ and $\Gamma \vdash e_1 : T_2 \rightarrow T$ and $\Gamma \vdash e_2 : T_2$. We're given that $e \rightarrow e'$. Case analysis of the last rule used in the derivation of this reduction step:
 - Case E-App1: Then $e' = e'_1 e_2$ and $e_1 \longrightarrow e'_1$. By the inductive hypothesis we have that $\Gamma \vdash e'_1 : T_2 \rightarrow T$. Therefore, by T-App we have $\Gamma \vdash e'_1 e_2 : T$.
 - Case E-App2: Then $e' = e_1 e'_2$ and $e_2 \longrightarrow e'_2$. By the inductive hypothesis we have that $\Gamma \vdash e'_2 : T_2$. Therefore, by T-App we have $\Gamma \vdash e_1 e'_2 : T$.
 - Case E-AppRed: Then $e_1 = \lambda x : T_1 . e_3$ and $e_2 = v$ and $e' = [x \mapsto v]e_3$. Since $\Gamma \vdash e_1 : T_2 \to T$ and e_1 is a value, by the Canonical Forms lemma we have that $T_1 = T_2$, so we have $\Gamma \vdash \lambda x : T_2 . e_3 : T_2 \to T$. By inspection, this derivation must end with rule T-Abs. Therefore we have that $\Gamma \cup \{x : T_2\} \vdash e_3 : T$. Since $\Gamma \vdash e_2 : T_2$ and $e_2 = v$ we have $\Gamma \vdash v : T_2$. Therefore by the Substitution lemma we have $\Gamma \vdash [x \mapsto v]e_3 : T$.
- Case T-True: Then e = true. By inspection, there is no e' such that true $\rightarrow e'$, so this case is satisfied trivially.
- Case T-False: Similar to the previous case.
- Case T-If: Then $e = (\text{if } e_1 \text{ then } e_2 \text{ else } e_3)$ and $\Gamma \vdash e_1 :$ Bool and $\Gamma \vdash e_2 : T$ and $\Gamma \vdash e_3 : T$. We're given that $e \longrightarrow e'$. Case analysis of the last rule used in the derivation of this reduction step:
 - Case E-IfTrue: Then $e' = e_2$, so we have $\Gamma \vdash e' : T$.
 - Case E-IfFalse: Then $e' = e_3$, so we have $\Gamma \vdash e' : T$.

- Case E-If: Then if e_1 then e_2 else $e_3 \longrightarrow$ if e'_1 then e_2 else e_3 , where $e_1 \longrightarrow e'_1$. By the inductive hypothesis we have $\Gamma \vdash e'_1$: Bool. Therefore by T-If we have $\Gamma \vdash if e'_1$ then e_2 else $e_3 : T$.

Theorem (Type Soundness #1): If $\vdash e : T$ then either e is a value or there exists e' such that $e \longrightarrow e'$ and $\vdash e' : T$. **Proof**: Since $\vdash e : T$, by Progress either e is a value or there exists e' such that $e \longrightarrow e'$. In the latter case, by Type Preservation we have $\vdash e' : T$.

Let $\xrightarrow{*}$ denote the reflexive, transitive closure of the \longrightarrow relation.

Corollary (Type Soundness #2): If $\vdash e : T$ and the evaluation of *e* terminates, then there exists *v* such that $e \xrightarrow{*} v$ and $\vdash v : T$.

Proof: Since $\vdash e : T$, by Type Soundness #1 we have that either *e* is a value or there exists *e'* such that $e \longrightarrow e'$ and $\vdash e' : T$. Since the evaluation of *e* terminates, some evaluation of *e* has finite length (number of reduction steps). We prove this corollary by induction on the length of this evaluation of *e*.

- Case length = 0: Then there does not exist e' such that $e \rightarrow e'$, so e must be a value. Therefore, this case is proven by taking v = e.
- Case length = n, where n > 0: Then there is at least one reduction step in the evaluation, so e is not a value. Therefore there exists e' such that e → e' and ⊢ e' : T. Since the evaluation of e terminates, so does the evaluation of e'. Further, the evaluation of e' has length n 1. Therefore, by the inductive hypothesis we have that there exists v such that e' * v and ⊢ v : T. Since e → e' and e' * v, we have e * v.