Implementation of Functional Langauges

Implementation techniques for functional languages:

- Landin's SECD machine (1963) \& successors
- Combinators (1979)
- Spineless Tagless G-machines (1991ish)
- Other developments: lambda lifting, supercombinators, special-purpose hardware for parallel graph reduction, etc.

Abstracting Variables Out

If we have a function definition:

```
def f x = ...
```

We first replace all functions in the definition of f with their curried versions:
$\operatorname{def} \mathrm{f} x=E$

Now we can abstract out the references to x :

$$
\operatorname{def} f=[x] E
$$

Where the abstraction operation has the property:
$([x] E) x=E$ (extensibility condition)

Notice that [x] E is similar to (lambda (x) E), but [x] E is a textual, compile time operation.

Definition of Combinators

Turner now defines a basic set of combinators: S, K, and I (see Turner, pg. 34)
$S \mathrm{f} g \mathrm{x}=\mathrm{f} \mathrm{x}(\mathrm{g} \mathrm{x})$
$K \mathrm{x} y=\mathrm{x}$
I $\mathrm{x}=\mathrm{x}$
(In fact we only need S and K, since $S K K=I$)

Rules for abstracting x

[x] (E1 E2) $=\mathrm{S}([\mathrm{x}] \mathrm{E} 1)([\mathrm{x}] \mathrm{E} 2)$
[x$] \mathrm{x}=\mathrm{I}$
[x] $y=K y$, where y is a constant or variable and x not equal to y

Example: successor function

```
suc x = plus 1 x
suc= [x] (plus 1 x)
    => S ([x] (plus 1)) ([x] x)
    => S (S (K plus) (K 1)) I
```

This is correct but long-winded. We add additional combinators B and C to get more compact graphs:

B $f \mathrm{~g} x=\mathrm{f}(\mathrm{g} \mathrm{x})$
C $\mathrm{f} \mathrm{g} x=\mathrm{f} \mathrm{x} \mathrm{g}$
with these additions the successor function compiles to suc $=$ plus 1

Proofs of Correctness

Take LHS of first rule, and apply it to x :
[x] (E1 E2) $x=E 1$ E2 (by extensionality)

RHS of first rule:

```
S ([x] E1) ([x] E2) x
    =(([x] E1) x) (([x] E2) x)
    = E1 E2 (extensionality, twice)
```

LHS of second rule, applied to x :
([x] x) $x=x$ (extensionality)

RHS of second rule

I $\mathrm{x}=\mathrm{x} \quad$ (definition of I$)$

LHS of third rule:

([x] y) $x=y$ (extensionality)

RHS of third rule
$K \mathrm{y} x=\mathrm{y} \quad$ (definition of K)

Example: average function

```
avg x y = (x+y)/2
```

replace + and / by curried versions:
$\operatorname{avg} \mathrm{x} y=$ divide (plus $\mathrm{x} y$) 2
abstract y (treating x as a constant)
$\operatorname{avg} \mathrm{x}=[\mathrm{y}]$ (divide (plus $\mathrm{x} y$) 2)
$=S([y]($ divide (plus $x y)))([y] 2)$
$=S(S([y]$ divide $)([y]$ (plus $x y)))([y] 2)$
$=S(S([y]$ divide $)([y]$ (plus $x y)))(K 2)$
$=C(S([y]$ divide $)([y]($ plus $x y))) 2$
$=C(S(K$ divide $)([y]$ (plus $x y))) 2$
$=C(S(K$ divide $)(S([y]($ plus $x))([y] y))) 2$
$=C(B$ divide $(S([y]$ (plus $x))([y] y))) 2$
$=C(B$ divide (S (S ([y] plus) ([y] x)) ([y] y))) 2
$=C(B$ divide $(S(S$ (K plus) $(K x)) I)) 2$
$=C(B$ divide $(S(K($ plus $x)) I)) 2$
$=C(B$ divide $($ plus $x)) 2$

```
avg = [x] (C (B divide (plus x)) 2)
avg = [x] (C (B divide (plus x)) 2)
    = S ([x] (C (B divide (plus x)))) ([x] 2)
    = S ([x] (C (B divide (plus x)))) (K 2)
    = C ([x] (C (B divide (plus x)))) 2
    = C (S ([x] C) ([x] (B divide (plus x)))) 2
    = C (S (K C) ([x] (B divide (plus x)))) 2
    = C (B C ([x] (B divide (plus x)))) 2
    = C (B C (S ([x] B divide) ([x] (plus x)))) 2
    = C (B C (S (S ([x] B) ([x] divide)) ([x] (plus x)))) 2
    = C (B C (S (S (K B) (K divide)) ([x] (plus x)))) 2
    = C (B C (S (K B divide) ([x] (plus x)))) 2
    = C (B C (S (K B divide) ([x] (plus x)))) 2
    = C (B C (B (B divide) ([x] (plus x)))) 2
    = C (B C (B (B divide) (S ([x] plus) ([x] x)))) 2
    = C (B C (B (B divide) (S (K plus) I))) 2
    = C (B C (B (B divide) plus)) 2
```

ugh!

Turner also introduces combinators for pattern matching

Y combinator -- finds fixedpoints

$$
Y f=f(Y f)
$$

used in local recursions
E where $\mathrm{x}=\ldots \mathrm{x}$...
example:
ham = 1: my_merge ham2 (my_merge ham3 ham5)

where

ham2 $=$ map (*2) ham
ham3 $=$ map (*3) ham ham5 $=$ map (*5) ham

S-K Reduction Example:

suc 2 where suc $x=1+x$
(from Turner paper)
The compiler transforms this to:
([suc] (suc 2)) ([x] (plus 1 x))

We then convert to combinator form:
S ([suc] suc) ([suc] 2) ([x] (plus 1 x))

S I (K 2) ([x] (plus 1 x))

C I 2 ([x] (plus 1 x))

C I 2 (S ([x] (plus 1)) ([x] x))

C I 2 (S (S ([x] plus) ([x] 1)) ([x] x))

C I 2 (S (S (K plus) (K 1)) ([x] x))

C I 2 (S (K (plus 1)) ([x] x))

C I 2 (S (K (plus 1)) I)

C I 2 (plus 1)

We can now evaluate this using a series of graph transformations:

Remember rule for C :
C $\mathrm{f} \mathrm{g} \mathrm{x}=\mathrm{f} \mathrm{x} \mathrm{g}$

Initially:
C I 2 (plus 1)

Using the rule for C
I (plus 1) 2

Using the rule for I
plus 12

Using the rule for plus:
3

Self-Optimizing Code

Simple example:
code is a built-in function that maps characters to numbers (ascii codes)
e.g. code ' 0 ' $=48$

```
makedigit n = code n - code 'o'
```

After the first evaluation the expression (code ' 0 ') will be replaced by 48
another example:

```
foldr op r = f
    where
    f [] = r
    f (a:x) = op a(f x)
    sum = foldr (+) 0
```

after the first evaluation of sum, it will be rewritten to the equivalent of

```
sum [] = 0
sum (a:x) = a+sum x
```

Replace calls to f by
f' y
supercombinators: combinators are abstracted from user's program
Johnnson et al, Chalmers University
this technique is used in e.g. one of the Haskell implementation

