
Alan Borning 1 CSE 505

Implementation of Functional Langauges

Implementation techniques for functional languages:

• Landin’s SECD machine (1963) & successors

• Combinators (1979)

• Spineless Tagless G-machines (1991ish)

• Other developments: lambda lifting, supercombinators,
special-purpose hardware for parallel graph reduction,
etc.

Alan Borning 2 CSE 505

The SECD Machine - a stack based machine

Consists of:

• S = stack

• E = environment: the current binding environment.

• C = code vector: the code to be evaluated.

• D = dump: other older contexts (which are restored after
we’re done evaluating a function).

The SECD machine uses applicative order evaluation.

To get normal order evaluation, pass an anonymous function (a
thunk) rather than a value as an argument. Evaluate the
function whenever the parameter value is needed.

This is the same as call-by-name in Algol-60. Improve efficiency
by replacing the anonymous function call by its value after it
is invoked -- this gives lazy evaluation.

Alan Borning 3 CSE 505

Combinators

Turner 1979: An alternative implementation strategy, using
combinator graphs.

A combinator is basically a function with no free variables or
constants (See for example Hindly and Seldin, “Introduction to Combinators and

Lambda-Calculus” for a formal treatment.)

Schonfinkel (1924) first described combinators. They provide a
way of avoiding variables altogether in lambda calculus.
(Variables cause a lot of complications in describing the
rewrite rules, principally because of the need to avoid
accidental collisions of variable names.)

Basic Idea

• Abstract away all variables, leaving code that can be
executed on a simple machine. Use combinators to
perform the abstraction.

• Result will be a graph.

• Execute using an abstract machine that does graph
reduction.

Alan Borning 4 CSE 505

Abstracting Variables Out

If we have a function definition:

def f x = ...

We first replace all functions in the definition of f with their
curried versions:

def f x = E

Now we can abstract out the references to x:

def f = [x]E

Where the abstraction operation has the property:

([x]E)x = E (extensibility condition)

Notice that [x]E is similar to (lambda (x) E) , but [x] E is
a textual, compile time operation.

Alan Borning 5 CSE 505

Definition of Combinators

Turner now defines a basic set of combinators: S, K, and I

(see Turner, pg. 34)

S f g x = f x (g x)

 K x y = x

I x = x

(In fact we only need S and K, since SKK=I)

Rules for abstracting x

[x] (E1 E2) = S ([x] E1) ([x] E2)

 [x] x = I

 [x] y = K y, where y is a constant or variable

and x not equal to y

Alan Borning 6 CSE 505

Proofs of Correctness

Take LHS of first rule, and apply it to x:

[x] (E1 E2) x = E1 E2 (by extensionality)

RHS of first rule:

S ([x] E1) ([x] E2) x

= (([x] E1) x) (([x] E2) x)

= E1 E2 (extensionality, twice)

LHS of second rule, applied to x:

([x] x) x = x (extensionality)

RHS of second rule

I x = x (definition of I)

LHS of third rule:

([x] y) x = y (extensionality)

RHS of third rule

K y x = y (definition of K)

Alan Borning 7 CSE 505

Example: successor function

suc x = plus 1 x

suc = [x] (plus 1 x)
=> S ([x] (plus 1)) ([x] x)
=> S (S (K plus) (K 1)) I

This is correct but long-winded. We add additional combinators
B and C to get more compact graphs:

B f g x = f (g x)
C f g x = f x g

with these additions the successor function compiles to

suc = plus 1

Alan Borning 8 CSE 505

Example: average function

avg x y = (x+y)/2

replace + and / by curried versions:

avg x y = divide (plus x y) 2

abstract y (treating x as a constant)

avg x = [y] (divide (plus x y) 2)

 = S ([y] (divide (plus x y))) ([y] 2)

 = S (S ([y] divide) ([y] (plus x y))) ([y] 2)

 = S (S ([y] divide) ([y] (plus x y))) (K 2)

 = C (S ([y] divide) ([y] (plus x y))) 2

 = C (S (K divide) ([y] (plus x y))) 2

 = C (S (K divide) (S ([y] (plus x)) ([y] y))) 2

 = C (B divide (S ([y] (plus x)) ([y] y))) 2

 = C (B divide (S (S ([y] plus) ([y] x)) ([y] y))) 2

 = C (B divide (S (S (K plus) (K x)) I)) 2

 = C (B divide (S (K (plus x)) I)) 2

 = C (B divide (plus x)) 2

Alan Borning 9 CSE 505

avg = [x] (C (B divide (plus x)) 2)

avg = [x] (C (B divide (plus x)) 2)

 = S ([x] (C (B divide (plus x)))) ([x] 2)

 = S ([x] (C (B divide (plus x)))) (K 2)

 = C ([x] (C (B divide (plus x)))) 2

 = C (S ([x] C) ([x] (B divide (plus x)))) 2

 = C (S (K C) ([x] (B divide (plus x)))) 2

 = C (B C ([x] (B divide (plus x)))) 2

 = C (B C (S ([x] B divide) ([x] (plus x)))) 2

 = C (B C (S (S ([x] B) ([x] divide)) ([x] (plus x)))) 2

 = C (B C (S (S (K B) (K divide)) ([x] (plus x)))) 2

 = C (B C (S (K B divide) ([x] (plus x)))) 2

 = C (B C (S (K B divide) ([x] (plus x)))) 2

 = C (B C (B (B divide) ([x] (plus x)))) 2

 = C (B C (B (B divide) (S ([x] plus) ([x] x)))) 2

 = C (B C (B (B divide) (S (K plus) I))) 2

 = C (B C (B (B divide) plus)) 2

ugh!

Turner also introduces combinators for pattern matching

Alan Borning 10 CSE 505

Y combinator -- finds fixedpoints

 Y f = f (Y f)

used in local recursions

 E where x = ... x ...

example:

ham = 1: my_merge ham2 (my_merge ham3 ham5)

 where

 ham2 = map (*2) ham

 ham3 = map (*3) ham

 ham5 = map (*5) ham

Alan Borning 11 CSE 505

S-K reduction machine

graph rewriting machine to interpret combinator code

Miranda uses normal order evaluation -- go down left branch of
the tree

until a combinator is found. Apply it to the args, and replace that
node

with the result.

Alan Borning 12 CSE 505

S-K Reduction Example:

suc 2 where suc x = 1+x

(from Turner paper)

The compiler transforms this to:

([suc] (suc 2)) ([x] (plus 1 x))

We then convert to combinator form:

S ([suc] suc) ([suc] 2) ([x] (plus 1 x))

S I (K 2) ([x] (plus 1 x))

C I 2 ([x] (plus 1 x))

C I 2 (S ([x] (plus 1)) ([x] x))

C I 2 (S (S ([x] plus) ([x] 1)) ([x] x))

C I 2 (S (S (K plus) (K 1)) ([x] x))

C I 2 (S (K (plus 1)) ([x] x))

C I 2 (S (K (plus 1)) I)

C I 2 (plus 1)

Alan Borning 13 CSE 505

We can now evaluate this using a series of graph
transformations:

Remember rule for C:
C f g x = f x g

Initially:

C I 2 (plus 1)

Using the rule for C

I (plus 1) 2

Using the rule for I

plus 1 2

Using the rule for plus:

3

Alan Borning 14 CSE 505

Self-Optimizing Code

Simple example:

code is a built-in function that maps characters to numbers
(ascii codes)

e.g. code ‘0’ = 48

 makedigit n = code n - code ‘0’

After the first evaluation the expression (code ‘0’) will be
replaced by 48

another example:

 foldr op r = f
where
f [] = r
f (a:x) = op a(f x)

 sum = foldr (+) 0

after the first evaluation of sum, it will be rewritten to the
equivalent of

 sum [] = 0
sum (a:x) = a+sum x

Alan Borning 15 CSE 505

Later Developments

lambda lifting

supercombinators (combinators are abstracted from user’s
program)

G machine

strictness analysis

compilation to conventional single-processor architectures

compilation for conventional parallel hardware

special-purpose hardware for parallel graph reduction

lambda lifting:

if we have a local function definition with free variables, we can
move

it to the top level by adding additional arguments that are then
applied to the free variables

example:

 f x = e where e contains a free variable y

define a new function

 f’ y x = e

at the top level

Alan Borning 16 CSE 505

Replace calls to f by

 f’ y

supercombinators: combinators are abstracted from user’s
program

Johnnson et al, Chalmers University

this technique is used in e.g. one of the Haskell implementation

