
Effective autocomplete
Patrik Ackland



The problem
● Autocomplete today is very simple
● Gives method name based on return type/letters typed



Examples
Return type Name



Problem
● Works for simple cases of depth 1 for right-hand side.

○ int a = t.getInt(); Didn’t save a lot of typing

● Not effective for more complex statements.
○ int a = object.getAnotherObject[0].getInt(); Would save more typing

● Not dynamic
● Does not use the environment or history.

○ How have statements like this looked in the past?
○ int age = numberOfShoes(); Correct but probably wrong.



Related work - CodeHint (2014)
● Dynamic analysis
● User asks for return type and describes expression
● Several iterations to find type. (99% of analyzed code has depth of at most 4) 
● Suggestion based on analysis of 10m lines of code
● Probabilistic model
● Probability of accessing member m of type T



Related work - CodeHint



Ideas for project
● Autocomplete more than just right-hand side of expression

○ Several lines
○ Function

● More accurate/faster suggestion with different model
○ machine learning
○ natural language processing

● Require less input from user
○ Currently: x’.toString().contains(“Eve”);



More autocomplete
Automatically generate for loop from this statement:

public static foo(int[] V) {
int sumOfEvenIndices=0;
for (

Or generate several lines based on user specification



New model
● Use NLP or ML to improve model.
● Use more than method and type (CodeHint).
● Can words that are used be of any help to improve suggestions?
● Probabilistic model based on analyzed code. What if we are writing new 

code?
● int age = person.getNumberOfShoes().



Require less from user
● User specifications for CodeHint

○ Improves accuracy
○ Requires more from user
○ Tricks like toString


