
Jennifer Niederländer

504: Machine Learning meets Program Analysis
Assignment 1

Problems that occurred to me while programming where the following:

1. Debugging can be really hard. I had several cases, where I just could not find the error and
debugged for hours without a concrete result. Especially if your program has an error that only
occurs in some runs of the program, this could be hard. Therefore, automated debugging can
really improve everyones programming experience by taking really hard and time consuming
work from us. As far as I know, there has already been some work in automated debugging
although it is not used regularly [1]. Basically debugging consists of three phases: Fault
localization, understanding and solving. For fault localization, there are already many
techniques available such as slicing although they are barely used in practice. This is due to
them only being effective in small pieces of code. Another problem with this techniques is that
they only point out where an error might occur and the user itself needs to find out whether
there is a fault in this particular piece of code and how to remove the error. So even if the user
localizes an error, he may need to take a look at the other pieces of code that may contain an
error as well. I guess this problem is not solved yet, because detecting errors can be really
challenging especially since there are so many parts of code that could contain the same error
but look totally different depending on the programming style of its programmer. Therefore, I
guess the interesting part for a possible project would be helping the user to find errors by
improving his understanding and pointing out possible faults more precisely. To accomplish this
task, we would need to collect data of as many errors and failures possible and then highlight
statements that are likely to have the same issues. In order to do so, the first step would be to
develop certain error patterns, we could use in the automated debugging tool, and find out how
to apply these to the code that needs to be debugged.

2. Performance issues. During writing my bachelor thesis, I had some hard problems with
performance. To my knowledge, there was already some work regarding performance testing.
These kind of work can tell you whether or not your program has a good performance or not
[2]. However, most of the time this is not a problem I have. When my program has bad
performance, sooner or later I notice it by simply running it. However, I think some help about
finding the performance problem could be very beneficial. It would be really good to have
something that points out parts of your code that could be improved regarding performance
and also gives hint about how to improve it. The challenge is to not point out every piece of
code that may be slow, since sometimes there may not be room for improvement and pointing
out to many irrelevant parts will cost the programmer a lot of time, but pointing out the right
pieces of the code and deliver information about what to change in order to make the program
faster. Maybe it would also be beneficial to have a tool that proposes packages to you that
could improve your performance and also help you write your code faster. To accomplish this
task, we would need to collect data about performance issues and how they are solved. The
next step would be generating patterns and applying them to other programs. Again a main
challenge would be the different programming style of different persons. Maybe transferring the
code into LTL or boolean algebra could help to solve this problem.

3. Security is a relevant topic for every programmer. If your program is not safe, people are not
likely to use it and when working for a company, security issues can harm you, your company
and your customers. Therefore, some level of security against well known attacks should be
considered while writing a program. However, to really ensure security, you will have to test
your program against these harmful attacks. This can be challenging because more and more
security threads get known and writing tests for all of them can be very hard without the
knowledge as well as very time consuming. But since security nowadays becomes more and
more important, you cannot skip this part. Therefore, it could be beneficial to have an
automated security test suite that checks certain types of programs against well known attacks.
Although it is impossible to collect an exhaustive list of security relevant issues that can be

Jennifer Niederländer

tested against, it would still be possible to detect the most common mistakes. First, we would
need to collect security relevant errors and learn patterns from it that can be matched against.
Thereby, it can be a real challenge that people have different programming styles and thus the
same errors can look different when written by different people. Another question would be
whether to learn patterns on the program dependency graph or the control flow graph of
programs that contain errors. As far as I know, such tools already exist for web applications, but
I think it can be interesting to explore them for a wider range of programs.

Sources
[1] „Are Automated Debugging TechniquesActually Helping Programmers?“ by Chris Parnin

and Alessandro Orso
[2] „DiPerF: an automated Distributed Performance testing Framework“ by Catalin

Dumitrescu, Ioan Raicu, Matei Ripeanu and Ian Foster

