Better Glue for Pipelines

504: Machine Learning meets Program Analysis Assignment 1

Luheng He

luheng@cs.washington.edu

Softwares used to solve natural language processing (NLP) and machine learning (ML) tasks
are usually pipelined and consist of a series of subtasks. In Table 1, the subtasks in blue color
are mostly task-independent, and usually harder to develop. For these tasks, people usually
depend on well-developed open-source softwares, such as NLTK, Stanford NLP (for
tokenization, tagging, parsing, etc.) and LibSVM, Mallet, Torch (for learning). The other
subtasks, such as input reader, feature extraction and evaluation, are highly task-dependent
and have to be developed from scratch. Sometimes people are required to use a published
evaluation script (in Perl, for many NLP tasks) for the purpose of fair comparison. For NLP tasks
in particular, due to their structured nature and huge input/output space, there is really no ideal
software that fits the requirement of all tasks.

Typical subtasks for NLP Typical subtasks for ML
1 Input Reader Input Reader
2 Segmentation/tokenization Pre-processing/Data filtering

3 Pos-tagging/Parsing/Named-entity Recognition

4 Feature Extraction for the target task

5 Parameter Fitting (Learning)

6 Evaluation/Cross validation

7 Hyper-parameter Tuning/Model Ensemble

8 Output/Analysis/Visualization

Table 1: Sub-tasks in NLP/ML pipelines.

Therefore, in a typical pipelined NLP/ML software, developers are usually forced to alternate
between 1). software written by themselves and by someone else. 2). software written in

mailto:luheng@cs.washington.edu

different programming languages. Glue code are written to pass around data and parameters.
For example, someone would write a some data processing script in Python to scrape all the
English titles from Wikipedia, dump them into a file, use Stanford NLP (in Java) to parse the
titles and store the results into a list of objects, write some Java code to extract features, learn a
classifier using the Java LibSVM wrapper. And for evaluation, what one might do is write the
prediction in a text file and run a Perl script from the commandline.

There are many things that can be improved in this pipelined process. The most important one
is probably about the glue code written to connect the subtasks. Glue code is usually developed
in a hurry, lack developers’ attention, and almost never get tested or verified.

Here is a realistic case: When using files to pass around intermediate data, developers need to
keep track of the file format. Sometimes Mthe file format is specified in the documentation,
sometimes in comments such as /* {word} \t {tag} \t f1, f2 */, and sometimes in the
developers’ brains. Misunderstanding and misalignment in file formats cause errors. For
example, the syntax parsing software outputs a parse tree with word indices starting from 1 but |
thought they start from 0.

Possible improvements to this problem would include:
1. Write comprehensive comments/documentation for the Input/Output file formats or
objects.
2. Write unit tests for the Reader/Writer functions in the software.
Write methods to check the validity of input files/objects.
4. Provide sample Input/Output data along with the software.

w

However, doing one or more of the above suggested could slow down development. It would be
great to come up with tools to automatically generate/suggest test cases/sanity checks for the
Reader/Writer methods. Maybe we can come up with an easy way for developers to specify the
types and the constraints of the intermediate data objects between the subtasks, and
automatically generate tests/verifications to check those types and constraints.

