Assignment 1

Patrik Ackland

e Understanding a large codebase. I find that it is difficult to navigate
large codebases to find out where new functionality should be added or
what section of the code a certain bug report is referring to. This problem
usually occures when you are new to a codebase. As you get more familiar
with the code this problem disappears. However, when additional people
are added to the project they will encounter the same problem. Even if
you know parts of the code you might want to get familiar with another
part of the code which introduces this problem again. A large number
of files is not the only problem. Design documents that are supposed
to give this information might be poorly written or out of date. This
could be addressed by automatically generating design documents from
the cosebase. The data that can be used for this is the code itself and
discussions between developers. Perhaps the original design documents
can be used to generate the design and the version control system can be
used to update the documents automatically. There are tools that do this
to a certain extent. Microsoft Visual Studio can generate diagrams that
show how classes interact with each other. However this is usually limited
in helping out with a large codebase.

e Writing good documentation. I find it difficult to write useful doc-
umentation that help other people understand my code. The underlying
cause is that I often feel that I am explaining my work twice. Once with
code and once with documentation. This leads to not putting as much
effort into documentation. Another reason for this is that documentation
is usually an afterthought. First I write the code and then I come back
to write the documentation. Many of the tools that exist to help with
documentation such as autogenerating javadoc in Eclipse only generates
annotations for parameters and their names but does not assist in writing
the actual documentation. Tools that autogenerate documentation are a
way to solve this problem. They could use the code and design documents
as data. It might be hard to generate good documentation but it takes
less effort from the programmer to correct a few mistakes in otherwise
good documentation.

e Writing useful testcases. I find that it is often difficult to write test
cases that cover every possible case. I often write tests that cover the
normal use cases that would get run most of the time. However, the edge



cases that are forgotten about might be the ones that end up causing
the most trouble later. The most common use cases would cause a bug
report quickly. Ways to currently solve this problem is to use profiling
techniques to see what parts of the code is being executed. Another way
is to randomize input. One way this could be solved is to automatically
generate test cases from the code itself and perhaps use other data as a
guide to what inputs should be used. I think the reason this has not been
solved effectivly is because it is hard to reason about what test cases are
needed. The automatically generated test cases need to do a better job
than a human would.

Lack of effective autocomplete. When writing code I feel that more
effective autocomplete would be useful. Current autocomplete tools can
assist with filling in names of objects and functions or give the code for
a general for loop. However, I think a lot more can be done to reason
about the program that is being written and what code the programmer
is expecting to write. If I write a function with the word sum in the
function name which takes an array as an argument, it could be inferred
that I would like the sum of the elements in the array as a result of
the function. This kind of autocomplete would assist the programmer
with simple tasks and let the programmer focus on more difficult tasks
that cannot be generated automatically. This can be extended in other
functions to using recently used or recently declared variables. The data
for this kind of analysis could be previously written code. With machine
learning techniques it could start giving poor suggestions and learn more
as it gets used to the programmers style. Many IDEs can automatically
generate functions with generalized names and arguments based on a call
to a function that does not exist. These are often general and do not help
with the actual code. I find it easier to write the function declaration
myself since Eclipse also generates comments about the function being
autogenerated that I have to remove.



