Overview of Model Checking

William Chan
wchan@cs.washington.edu

Department of Computer Science & Engineering
University of Washington

Outline

Basics of model checking and temporal logic
The symbolic variant
Applications to specifications of reactive software

Some lessons

Temporal-Logic Model Checking [Clarke & Emerson 81]

State Machine ——X

Yes, or
Model Checker ——=> o with a

counterexample

=

Behavioral Property L y

Some properties expressible in temporal logics:

e Error states not reached (invariant).
e Eventually ack for each request (liveness).

e Can always restart the machine.

Computation Tree Logic (CTL)

e The usual Boolean operators: A, V, —, etc., plus:

A: for all paths, E. for some path,
G: globally on the path, F: in a future state on the path, and some more.
e Examples:
Error states not reached AG—ErT

Eventually ack for each request AG(req— AFack)
Can always restart the machine AGEFrestart

Many other temporal logics exist.

e Decade-long debate: expressiveness and complexity.

Why Temporal Logics?

What's wrong with partial correctness and termination?

e Not suitable for reactive systems.

e e.g., cannot express liveness and fairness.

The introduction of temporal logic is an award-winning idea. (Pnueli)
Why model checking?
e “Easy” for finite-state machines.

e Fancy graph traversals, linear in # states & transitions.

e You already know how to evaluate AG—EIT.

State Explosion

states grow exponentially with # components.

Attacks:

e Abstraction and composition (Cospan)

e Symmetry reduction (Mur¢)
e Partial-order reduction (Spin)

e Symbolic search (SMV, VIS):

— Represent a set of states symbolically without enumerating the states
individually.

Invariant Checking as Set Manipulations

Compute Y, 1 = Pre(Yj) UY;. Checkif Y,NInit = 0.

Fixed point

States that may

Error
reach an error state or states

Backward breadth-first search

Symbolic Search [Burch et al. 90, Coudert et al. 89]

Define Boolean state variables X.

— e.g., define X,_1, Xh_2, ..., Xg for an n-bit integer.

A set of states: a Boolean function §(X).

— e.g., —Xg for the set of n-bit even integers.

Set operations (U, M) becomes Boolean operations (V, N).
Transition relation: R(X, X’).

Compute predecessors also using Boolean operations:

Pre(S) = AX. 3X. (X)) AR(X, X).

Binary Decision Diagrams (BDDs) [Bryant 86]

BDD for odd parity e Generalization of binary decision trees to
DAGsS.
e Restrictions:

O// 1

. — Reduced: isomorphic subgraphs merged.
X X

Il Il — Ordered: every path conforms to a

I I common variable order.
X2 X2 e Properties:

I I — Canonical.

0 - — Operations poly-time in BDD size.

BDDs are Wild

BDD size not direclty related to numbers of states or variables.

[] Usually small. Some large state spaces (10?% can be handled.
[l Reduce the amount of manual abstraction needed.

[1 Sensitive to implementation details like variable order.

[1 Some well-known limitations (e.g., exponential size for X > y2).

[1 Few theoretical results known for general control systems.
Performance can be unpredictable.

Why Might BDDs Not Work Well for Software?

Common view:

Hardware Software
Data Simple Complex
States Finite Infinite
Concurrenc Synchronous Asynchronous
Y | (aka Simultaneous) | (aka Interleaving)
Strategy Use BDDs Abstract and

search explicitly

This may be true for software like multi-threaded programs, but

10

Consider Many Safety-Critical Software Specs

Hardware Spec Multi-threaded Code
o Finite ol infin
States Finite (except numbers) Possibly infinite
. Simple
Data Simple (except numbers) Often complex
Concurrency | Synchronous Synchronous Asynchronous

Perhaps BDDs would work for such specs?

11

The lterative Process

(probably with
abstraction)
Boolg_an
encoding r \
SPEC =" (inHDL) —==| Model
Checker |—= Y€S, Or
= counterexample
Property L)

Analyst <

12

TCAS I

e Traffic Alert and Collision Avoidance System
— Warns pilots of traffic. (Does not control airciraft.)

— Issues vertical resolution advisories (RAS)

e.g., Climb, Descend, Increase-Climb, Do Not Descend > 500 ft/min.

— Required on most commercial aircraft in USA.

— One of the most complex systems on commercial aircraft.
e 400-page specification reverse-engineered from pseudo-code.
e Written in RSML [Leveson et al. 94|, based on statecharts.

e Complexity in guarding conditions, not hierarchy or synchronization.

13

Analysis of TCAS Il [FSE 96, TSE 98]

Around 200 Boolean variables, 10°° states.
Used model checker SMV. [McMillan 93]
Domain-independent properties:

— Transition consistency:
AG—(XAC1ACp)

Domain-dependent properties:

— Descent inhibition:
AG(Alt < 1000— —Descendl

— Output agreement:
AG—(GoalRate> 0 A Descend

14

EPD System

Electrical Power Distribution system used on Boeing 777.

e Distribute power from power sources to power busses via circuit breakers.
e Tolerate failures in power sources and circuit breakers.
e Prototype specification for research purposes.

e EXxercised extensively in simulation.

15

Failure Handling

power sources: LGen RGen

circuit breakers:

;xl<en RGen ---

|

power busses: LMain RMain

|
LMain RMain

16

Analysis of EPD System

Joint work with David Jones and William Warner of Boeing. [ICSE 99]

e 90 Boolean variables, 10?7 states.

e Fault tolerance
— AG(NoFailures— (LMain A RMainA LBackupA RBackup).
— AG(AtMostOneFailure— (LMain A RMain)).
— AG(AtMostTwoFailures— (LBackupv RBackup).

e Found modeling errors and logical flaws.

Not as complex as TCAS II, but initial analysis failed.

17

Issues/Lessons

e BDDs can't handle complicated arithmetic.
— Abstract
— Bound and discretize
* Not sound, but it's ok.
— Combine with a constraint solver.
e Domain expertise is essential.
— For domain-specific properties
— For abstraction

* But, again, doesn't need to be sound and complete.

18

Issues/Lessons (cont'd)

Can help understand interactions among components.
Forward vs. backward search

— Lots of open questions.

— For us, backward can be much better than forward.
Synchronization affects efficiency.

Can exploit high-level knowledge to do optimizations.

— Can be much more efficient than using model checker as a black box.

19

SMC vs. Theorem Proving

Similarity: Preis essentially the dual of WP.

Some key differences:

SMC Theorem Proving
finite-state no assumption

can be automated need user guidance
efficient representations readable representations

counterexamples (if false) inspiring proofs (if true)

e MC is more useful because most systems are buggy!

e In MC, you gain confidence in correctness thru experiments.

e Much current work on infinite-state SMC.

20

