
Overview of Model Checking

William Chan
wchan@cs.washington.edu

Department of Computer Science & Engineering
University of Washington

Outline

• Basics of model checking and temporal logic

• The symbolic variant

• Applications to specifications of reactive software

• Some lessons

1

Temporal-Logic Model Checking [Clarke & Emerson 81]

Model Checker

State Machine

Behavioral Property

Yes, or
no with a

counterexample

Some properties expressible in temporal logics:

• Error states not reached (invariant).

• Eventually ack for each request (liveness).

• Can always restart the machine.

2

Computation Tree Logic (CTL)

• The usual Boolean operators: ∧, ∨, ¬, etc., plus:

A: for all paths, E: for some path,
G: globally on the path, F: in a future state on the path, and some more.

• Examples:

Error states not reached AG¬Err
Eventually ack for each request AG(req→ AFack)
Can always restart the machine AGEFrestart

Many other temporal logics exist.

• Decade-long debate: expressiveness and complexity.

3

Why Temporal Logics?

What's wrong with partial correctness and termination?

• Not suitable for reactive systems.

• e.g., cannot express liveness and fairness.

The introduction of temporal logic is an award-winning idea. (Pnueli)

Why model checking?

• “Easy” for finite-state machines.

• Fancy graph traversals, linear in # states & transitions.

• You already know how to evaluate AG¬Err .

4

State Explosion

states grow exponentially with # components.

Attacks:

• Abstraction and composition (Cospan)

• Symmetry reduction (Murϕ)

• Partial-order reduction (Spin)

• Symbolic search (SMV, VIS):

– Represent a set of states symbolically without enumerating the states
individually.

5

Invariant Checking as Set Manipulations

Compute Yi+1 = Pre(Yi)∪Yi. Check if Yn∩ Init = /0.

Y0 = ErrY1
· · ·Yn−1Yn = Yn+1

Backward breadth-first search

Fixed point

Error statesStates that may
reach an error state

Init

6

Symbolic Search [Burch et al. 90, Coudert et al. 89]

• Define Boolean state variables X.

– e.g., define xn−1, xn−2, . . . , x0 for an n-bit integer.

• A set of states: a Boolean function S(X).

– e.g., ¬x0 for the set of n-bit even integers.

• Set operations (∪, ∩) becomes Boolean operations (∨, ∧).

• Transition relation: R(X,X′).

• Compute predecessors also using Boolean operations:

Pre(S) = λX. ∃X′. S(X′)∧R(X,X′).

7

Binary Decision Diagrams (BDDs) [Bryant 86]

BDD for odd parity

x0

x1x1

x2 x2

0

0

1

1

• Generalization of binary decision trees to
DAGs.

• Restrictions:

– Reduced: isomorphic subgraphs merged.

– Ordered: every path conforms to a
common variable order.

• Properties:

– Canonical.

– Operations poly-time in BDD size.

8

BDDs are Wild

BDD size not direclty related to numbers of states or variables.

✓ Usually small. Some large state spaces (1020) can be handled.

✓ Reduce the amount of manual abstraction needed.

✗ Sensitive to implementation details like variable order.

✗ Some well-known limitations (e.g., exponential size for x> yz).

✗ Few theoretical results known for general control systems.
Performance can be unpredictable.

9

Why Might BDDs Not Work Well for Software?

Common view:

Hardware Software

Data Simple Complex

States Finite Infinite

Concurrency
Synchronous

(aka Simultaneous)
Asynchronous

(aka Interleaving)

Strategy Use BDDs Abstract and
search explicitly

This may be true for software like multi-threaded programs, but

10

Consider Many Safety-Critical Software Specs

Hardware Spec Multi-threaded Code

States Finite Finite
(except numbers) Possibly infinite

Data Simple
Simple

(except numbers) Often complex

Concurrency Synchronous Synchronous Asynchronous

Perhaps BDDs would work for such specs?

11

The Iterative Process

Model
Checker

Boolean
encoding
(in HDL)

Property

Spec

(probably with
abstraction)

Analyst

Yes, or
counterexample

12

TCAS II

• Traffic Alert and Collision Avoidance System

– Warns pilots of traffic. (Does not control airciraft.)

– Issues vertical resolution advisories (RAs)
e.g., Climb, Descend, Increase-Climb, Do Not Descend > 500 ft/min.

– Required on most commercial aircraft in USA.

– One of the most complex systems on commercial aircraft.

• 400-page specification reverse-engineered from pseudo-code.

• Written in RSML [Leveson et al. 94], based on statecharts.

• Complexity in guarding conditions, not hierarchy or synchronization.

13

Analysis of TCAS II [FSE 96, TSE 98]

• Around 200 Boolean variables, 1060 states.

• Used model checker SMV. [McMillan 93]

• Domain-independent properties:

– Transition consistency:
AG¬(x∧c1∧c2)

• Domain-dependent properties:

– Descent inhibition:
AG(Alt < 1000→¬Descend)

– Output agreement:
AG¬(GoalRate≥0∧Descend)

x[c1]

x[c2]

14

EPD System

Electrical Power Distribution system used on Boeing 777.

• Distribute power from power sources to power busses via circuit breakers.

• Tolerate failures in power sources and circuit breakers.

• Prototype specification for research purposes.

• Exercised extensively in simulation.

15

Failure Handling

LGen RGen

LMain RMain

power sources:

circuit breakers:

power busses:

· · ·

· · ·

LGen RGen

LMain RMain · · ·

· · ·

16

Analysis of EPD System

Joint work with David Jones and William Warner of Boeing. [ICSE 99]

• 90 Boolean variables, 1027 states.

• Fault tolerance

– AG(NoFailures→ (LMain∧RMain∧LBackup∧RBackup)).

– AG(AtMostOneFailure→ (LMain∧RMain)).

– AG(AtMostTwoFailures→ (LBackup∨RBackup)).

• Found modeling errors and logical flaws.

Not as complex as TCAS II, but initial analysis failed.

17

Issues/Lessons

• BDDs can't handle complicated arithmetic.

– Abstract

– Bound and discretize

∗ Not sound, but it's ok.

– Combine with a constraint solver.

• Domain expertise is essential.

– For domain-specific properties

– For abstraction

∗ But, again, doesn't need to be sound and complete.

18

Issues/Lessons (cont'd)

• Can help understand interactions among components.

• Forward vs. backward search

– Lots of open questions.

– For us, backward can be much better than forward.

• Synchronization affects efficiency.

• Can exploit high-level knowledge to do optimizations.

– Can be much more efficient than using model checker as a black box.

19

SMC vs. Theorem Proving

Similarity: Pre is essentially the dual of WP.

Some key differences:

SMC Theorem Proving

finite-state no assumption
can be automated need user guidance
efficient representations readable representations
counterexamples (if false) inspiring proofs (if true)

• MC is more useful because most systems are buggy!

• In MC, you gain confidence in correctness thru experiments.

• Much current work on infinite-state SMC.

20

