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• Basics of model checking and temporal logic

• The symbolic variant

• Applications to specifications of reactive software

• Some lessons
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Temporal-Logic Model Checking [Clarke & Emerson 81]

Model Checker

State Machine

Behavioral Property

Yes, or
no with a

counterexample

Some properties expressible in temporal logics:

• Error states not reached (invariant).

• Eventually ack for each request (liveness).

• Can always restart the machine.
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Computation Tree Logic (CTL)

• The usual Boolean operators: ∧, ∨, ¬, etc., plus:

A: for all paths, E: for some path,
G: globally on the path, F: in a future state on the path, and some more.

• Examples:

Error states not reached AG¬Err
Eventually ack for each request AG(req→ AFack)
Can always restart the machine AGEFrestart

Many other temporal logics exist.

• Decade-long debate: expressiveness and complexity.
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Why Temporal Logics?

What's wrong with partial correctness and termination?

• Not suitable for reactive systems.

• e.g., cannot express liveness and fairness.

The introduction of temporal logic is an award-winning idea. (Pnueli)

Why model checking?

• “Easy” for finite-state machines.

• Fancy graph traversals, linear in # states & transitions.

• You already know how to evaluate AG¬Err .
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State Explosion

# states grow exponentially with # components.

Attacks:

• Abstraction and composition (Cospan)

• Symmetry reduction (Murϕ)

• Partial-order reduction (Spin)

• Symbolic search (SMV, VIS):

– Represent a set of states symbolically without enumerating the states
individually.
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Invariant Checking as Set Manipulations

Compute Yi+1 = Pre(Yi)∪Yi. Check if Yn∩ Init = /0.

Y0 = ErrY1
· · ·Yn−1Yn = Yn+1

Backward breadth-first search

Fixed point

Error statesStates that may
reach an error state

Init
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Symbolic Search [Burch et al. 90, Coudert et al. 89]

• Define Boolean state variables X.

– e.g., define xn−1, xn−2, . . . , x0 for an n-bit integer.

• A set of states: a Boolean function S(X).

– e.g., ¬x0 for the set of n-bit even integers.

• Set operations (∪, ∩) becomes Boolean operations (∨, ∧).

• Transition relation: R(X,X′).

• Compute predecessors also using Boolean operations:

Pre(S) = λX. ∃X′. S(X′)∧R(X,X′).
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Binary Decision Diagrams (BDDs) [Bryant 86]

BDD for odd parity

x0

x1x1

x2 x2

0

0

1

1

• Generalization of binary decision trees to
DAGs.

• Restrictions:

– Reduced: isomorphic subgraphs merged.

– Ordered: every path conforms to a
common variable order.

• Properties:

– Canonical.

– Operations poly-time in BDD size.
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BDDs are Wild

BDD size not direclty related to numbers of states or variables.

✓ Usually small. Some large state spaces (1020) can be handled.

✓ Reduce the amount of manual abstraction needed.

✗ Sensitive to implementation details like variable order.

✗ Some well-known limitations (e.g., exponential size for x> yz).

✗ Few theoretical results known for general control systems.
Performance can be unpredictable.

9



Why Might BDDs Not Work Well for Software?

Common view:

Hardware Software

Data Simple Complex

States Finite Infinite

Concurrency
Synchronous

(aka Simultaneous)
Asynchronous

(aka Interleaving)

Strategy Use BDDs Abstract and
search explicitly

This may be true for software like multi-threaded programs, but . . . .
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Consider Many Safety-Critical Software Specs

Hardware Spec Multi-threaded Code

States Finite Finite
(except numbers) Possibly infinite

Data Simple
Simple

(except numbers) Often complex

Concurrency Synchronous Synchronous Asynchronous

Perhaps BDDs would work for such specs?
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The Iterative Process

Model
Checker

Boolean
encoding
(in HDL)

Property

Spec

(probably with
abstraction)

Analyst

Yes, or
counterexample
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TCAS II

• Traffic Alert and Collision Avoidance System

– Warns pilots of traffic. (Does not control airciraft.)

– Issues vertical resolution advisories (RAs)
e.g., Climb, Descend, Increase-Climb, Do Not Descend > 500 ft/min.

– Required on most commercial aircraft in USA.

– One of the most complex systems on commercial aircraft.

• 400-page specification reverse-engineered from pseudo-code.

• Written in RSML [Leveson et al. 94], based on statecharts.

• Complexity in guarding conditions, not hierarchy or synchronization.
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Analysis of TCAS II [FSE 96, TSE 98]

• Around 200 Boolean variables, 1060 states.

• Used model checker SMV. [McMillan 93]

• Domain-independent properties:

– Transition consistency:
AG¬(x∧c1∧c2)

• Domain-dependent properties:

– Descent inhibition:
AG(Alt < 1000→¬Descend)

– Output agreement:
AG¬(GoalRate≥0∧Descend)

x[c1]

x[c2]
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EPD System

Electrical Power Distribution system used on Boeing 777.

• Distribute power from power sources to power busses via circuit breakers.

• Tolerate failures in power sources and circuit breakers.

• Prototype specification for research purposes.

• Exercised extensively in simulation.
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Failure Handling

LGen RGen

LMain RMain

power sources:

circuit breakers:

power busses:

· · ·

· · ·

LGen RGen

LMain RMain · · ·

· · ·
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Analysis of EPD System

Joint work with David Jones and William Warner of Boeing. [ICSE 99]

• 90 Boolean variables, 1027 states.

• Fault tolerance

– AG(NoFailures→ (LMain∧RMain∧LBackup∧RBackup)).

– AG(AtMostOneFailure→ (LMain∧RMain)).

– AG(AtMostTwoFailures→ (LBackup∨RBackup)).

• Found modeling errors and logical flaws.

Not as complex as TCAS II, but initial analysis failed.
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Issues/Lessons

• BDDs can't handle complicated arithmetic.

– Abstract

– Bound and discretize

∗ Not sound, but it's ok.

– Combine with a constraint solver.

• Domain expertise is essential.

– For domain-specific properties

– For abstraction

∗ But, again, doesn't need to be sound and complete.
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Issues/Lessons (cont'd)

• Can help understand interactions among components.

• Forward vs. backward search

– Lots of open questions.

– For us, backward can be much better than forward.

• Synchronization affects efficiency.

• Can exploit high-level knowledge to do optimizations.

– Can be much more efficient than using model checker as a black box.
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SMC vs. Theorem Proving

Similarity: Pre is essentially the dual of WP.

Some key differences:

SMC Theorem Proving

finite-state no assumption
can be automated need user guidance
efficient representations readable representations
counterexamples (if false) inspiring proofs (if true)

• MC is more useful because most systems are buggy!

• In MC, you gain confidence in correctness thru experiments.

• Much current work on infinite-state SMC.
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