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#

fﬁ File:  kwic.icn

#

fﬁ Subject: Program to produce keywords in context

#

# Author: Stephen B. Wampler, modified by Ralph E. Griswold

z Date: February 15, 1995
z######################################################################
#

# <munch, including info on this being public domain>

#

# Some noise words are omitted (see "exceptions" in the program
# text). If afile named except.wrd is open and readable in the

# current directory, the words in it are used instead.

#

#  This program is pretty simple. Possible extensions include ways
# of specifying words to be omitted, more flexible output formatting,
# and so on. Another "embellisher's delight".

#

HH



gl obal line, loc, exceptions, width

procedure main(args)

local exceptfile

width ;= integer(args[1]) | 40

if exceptfile := open("except.wrd") then {
exceptions := set()
every insert(exceptions, lcword(exceptfile))
close(exceptfile)

else
exceptlons = Set(["Or", "in", "the", "tO", "Of", "On", nan'
"an"' "at", "and", "i", "it", "by", "fOf"])
every write(kwic(&input))
end

procedure kwic(file)
local index, word

# Each word, in lowercase form, is a key in the table "index".
# The corresponding values are lists of the positioned lines
# for that word. This method may use an impractically large
# amount of space for large input files.

index := table()
every word := Icword(file) do {
if not member(exceptions,word) then {
/index[word] := ]
index[word] := put(index[word],position())
}
}

# Before the new sort options, it was done this way — the
# code preserved as an example of "generators in action".
# suspend !((Isort(index,1))[2])

index := sort(index,3)
while get(index) do
suspend !get(index)
end

procedure Icword(file)
static chars
initial chars := &ucase ++ &lcase ++ &digits ++ '\"
every line := file do
line ? while tab(loc := upto(chars)) do
suspend map(tab(many(chars)) \ 1)
end

procedure position()
local offset # Note that "line" and ""loc" are global.



offset := width - loc
if offset >= 0 then return repl (" ",offset) || line
el se return line[-offset + 1:0]

end



