
Sample input

now is the time for all
good men and women to come to
the aid of their country

Sample output

the aid of their country
 now is the time for all
 good men and women to come to
 the aid of their country
 good men and women to come to
 now is the time for all
 good men and women to come to
 now is the time for all
 the aid of their country
 now is the time for all
 good men and women to come to

###
˝
#
˝
File: kwic.icn
˝
#
˝
Subject: Program to produce keywords in context
˝
#
˝
Author: Stephen B. Wampler, modified by Ralph E. Griswold
#
Date: February 15, 1995
#
###
#
<munch, including info on this being public domain>
#
Some noise words are omitted (see "exceptions" in the program
text). If a file named except.wrd is open and readable in the
current directory, the words in it are used instead.
#
This program is pretty simple. Possible extensions include ways
of specifying words to be omitted, more flexible output formatting,
and so on. Another "embellisher's delight".
#
###

global line, loc, exceptions, width
˝

˝
procedure main(args)
˝
 local exceptfile
˝

˝
 width := integer(args[1]) | 40
 if exceptfile := open("except.wrd") then {
 exceptions := set()
 every insert(exceptions, lcword(exceptfile))
 close(exceptfile)
 }
 else
 exceptions := set(["or", "in", "the", "to", "of", "on", "a",
 "an", "at", "and", "i", "it", "by", "for"])
 every write(kwic(&input))
end

procedure kwic(file)
 local index, word

Each word, in lowercase form, is a key in the table "index".
The corresponding values are lists of the positioned lines
for that word. This method may use an impractically large
amount of space for large input files.

 index := table()
 every word := lcword(file) do {
 if not member(exceptions,word) then {
 /index[word] := []
 index[word] := put(index[word],position())
 }
 }

Before the new sort options, it was done this way – the
code preserved as an example of "generators in action".
suspend !((!sort(index,1))[2])

 index := sort(index,3)
 while get(index) do
 suspend !get(index)
end

procedure lcword(file)
 static chars
 initial chars := &ucase ++ &lcase ++ &digits ++ '\''
 every line := !file do
 line ? while tab(loc := upto(chars)) do
 suspend map(tab(many(chars)) \ 1)
end

procedure position()
 local offset # Note that "line" and ""loc" are global.

 offset := width - loc
 if offset >= 0 then return repl(" ",offset) || line
 else return line[-offset + 1:0]
end

