Sanpl e i nput

nowis the tinme for all
good nmen and woren to cone to
the aid of their country

Sanpl e out put

the aid of their country
nowis the tinme for all
good nmen and woren to cone to
the aid of their country
good nen and wonmen to cone to
nowis the tinme for all
good nen and wonmen to cone to
nowis the tinme for all
the aid of their country
nowis the tinme for all
good nen and wonmen to cone to

RAHBHHBHARHBHARABRHBH AR A BHHBHARHRHARHABRHBHARHBHHBH AR HRHARABRHRBHARHBHHRH

#

fﬁ File: kwic.icn

#

fﬁ Subject: Program to produce keywords in context

#

Author: Stephen B. Wampler, modified by Ralph E. Griswold

z Date: February 15, 1995
z##
#

<munch, including info on this being public domain>

#

Some noise words are omitted (see "exceptions" in the program
text). If afile named except.wrd is open and readable in the

current directory, the words in it are used instead.

#

This program is pretty simple. Possible extensions include ways
of specifying words to be omitted, more flexible output formatting,
and so on. Another "embellisher's delight".

#

HH

gl obal line, loc, exceptions, width

procedure main(args)

local exceptfile

width ;= integer(args[1]) | 40

if exceptfile := open("except.wrd") then {
exceptions := set()
every insert(exceptions, lcword(exceptfile))
close(exceptfile)

else
exceptlons = Set(["Or", "in", "the", "tO", "Of", "On", nan'
"an"' "at", "and", "i", "it", "by", "fOf"])
every write(kwic(&input))
end

procedure kwic(file)
local index, word

Each word, in lowercase form, is a key in the table "index".
The corresponding values are lists of the positioned lines
for that word. This method may use an impractically large
amount of space for large input files.

index := table()
every word := Icword(file) do {
if not member(exceptions,word) then {
/index[word] :=]
index[word] := put(index[word],position())
}
}

Before the new sort options, it was done this way — the
code preserved as an example of "generators in action".
suspend !((Isort(index,1))[2])

index := sort(index,3)
while get(index) do
suspend !get(index)
end

procedure Icword(file)
static chars
initial chars := &ucase ++ &lcase ++ &digits ++ '\"
every line := file do
line ? while tab(loc := upto(chars)) do
suspend map(tab(many(chars)) \ 1)
end

procedure position()
local offset # Note that "line" and ""loc" are global.

offset := width - loc
if offset >= 0 then return repl (" ",offset) || line
el se return line[-offset + 1:0]

end

