
Neural Network Machine Translation of
Javadoc Tags to Java Specifications
Qifan Lu (​lqf96@uw.edu​) Nikita Haduong (​qu@uw.edu​) Samia Ibtasam (​samiai@uw.edu​)

Motivation
The JDoctor paper ​[1] proposes generating program specifications from semi-structured Javadoc
comments. Program specifications express intended program behaviors and are useful in determining if
the program is implemented correctly or not. While formal specifications are rarely practiced, infrequently
updated ​[2] or delayed to a later point in time ​[3]​, semi-structured documentation with source code is
supposed to convey the program’s intention. JDoctor reads documentation accompanying Java classes
and functions and constructs executable program specifications in the form of boolean Java expressions.

Javadoc comments are used to annotate code with informal specification and usually include a
description of member function followed by a series of tags, which informally define program
specifications. For example, the ‘​@param​’ tag describes method parameters and conditions that callers
must conform to (called pre-conditions), the ​‘@return’ tag describes the return value of the function as
well as its characteristics (called normal post-conditions); and the ​‘@throws’ ​tag describes what and when
an exception will be thrown by the function (called exceptional post-conditions).

JDoctor translates Javadoc tags into program specifications with four steps: text normalization,
proposition identification, proposition translation, and specification creation. During the text
normalization step, JDoctor preprocesses Javadoc tags into grammatical English sentences to
accommodate current NLP parsers. To identify propositions, the normalized text is tagged for
part-of-speech to extract subject and predicates, based on the observation that nouns tend to
correspond to variables or expressions while predicates tend to correspond to function calls. These
subject and predicate pairs are translated into propositions by using pattern, lexical, and semantic
matching to map natural language to corresponding Java expression fragments (e.g. “is positive” → ` >0 `).
Many of these mappings are manually-created rules that are expensive to create and not easily
adaptable to other programming language documentation. They are also not robust to writing style
changes (e.g. “is greater than zero” instead of “is positive”). After proposition translation, JDoctor
generates program specifications by assembling these fragments into an executable boolean-typed Java
expression.

As JDoctor is designed specifically for analyzing Javadoc, with many handcrafted procedures. While it is
able to achieve impressive results on Javadoc translation, its rules can be expensive to create (the time
and human labor of creating many rules and exceptions). This inspires us to replace the handcrafted
translation procedures with a neural network-based model that automatically learns the mapping from
natural language to program specifications. Such a model will not only reduce the burden of humans but
could also generalize to other programming languages, thus enabling developers to write sound
programs regardless of the language they use.

mailto:lqf96@uw.edu
mailto:qu@uw.edu
mailto:samiai@uw.edu
https://www.zotero.org/google-docs/?0bakZV
https://www.zotero.org/google-docs/?g15lJ9
https://www.zotero.org/google-docs/?v6fB7t
mernst
Highlight
This is not a distinction from the first half of the sentence.

mernst
Highlight
This is the first mention. It comes out of the blue. Why is it relevant?

mernst
Highlight
Javadoc applies to more than members (they aren't called "functions" in Java). If that is your focus, say so but do not make an inaccurate comment about Javadoc in general.

mernst
Highlight
Why?

mernst
Highlight
Incorrect grammar.

mernst
Highlight
Please cite evidence to support this claim (and any claim).

mernst
Highlight
It seems your goal is to replace the entire tool rather than just the handcrafted parts. Is that correct? Please clarify.

mernst
Highlight
Do you mean that some model will generalize, or that the approach will generalize? I believe the approach will generalize, but I am not sure that the model will.

Goal
The project’s goal is to develop a neural network-based translator that converts Javadoc tags (or
semi-structured documentation for other programming languages) into program specifications, possibly
in an end-to-end fashion, where the network’s input is solely raw Javadoc tags, and its output is program
specifications. Developing this translator comes with many challenges, such as the choice of training
data and the structure of our neural network model. We cover major problems and potential solutions to
our approach in the “Questions” section in details.

Proposed Design
The initial design will focus solely on translating Javadoc tags into program specifications, whose format
is specified below. If the approach is feasible and time permits, we will try to extend our approach to
documentation for other programming languages. In either case, the input will be the program
documentation tags that are related to method parameters, return values and exceptions. The output will
be program specifications in the form of language-dependent executable boolean-typed expressions. In
the case of Javadoc, both the input and the output should be identical to [1].

Our neural network (NN) model will use informal Javadoc tags as input and the associated procedural
specifications (generated by the JDoctor) as target output. The NN will then learn the relationships
between the tags and specifications. The NN might also inform us about the possible weights (or
influence) of a few tags over the program specification. This can be useful in understanding the effects or
presence (or absence) of a tag or the weakness or strongness of a tag and its impact on the program
specifications.

Evaluations
1. Accuracy (Quantitative): ​We have gold-labeled data mapping Javadoc tags to program

specifications, so we will evaluate how well our NN performs by having it make predictions on
held-out data and calculating the precision, recall, and F1-score of its predictions.

2. Output Quality (Qualitative): For cases where the NN prediction is incorrect, we will examine the
prediction for how it differs from the gold-label. Are predicted specifications invalid, failing to
compile? Are they incomplete, failing to make a complete translation of the tag into program
specification?

3. Adaptation to other programming languages (time permitting): ​Once an NN model is trained
for particular language-specific expressions, we can also try to evaluate its portability and
adaptability to other programming languages by changing the training data (e.g. using Python
docstrings instead of Javadoc comments).

Questions
● How do we design the NN so that it minimizes the possibility of producing illegal program

specifications? For strongly typed languages, how can the NN model be aware of type systems?
● An NN model typically requires many training samples. How do we choose our training dataset?

Possibilities include Java projects using Java Modeling Language (JML) or Contracts for Java
(C4J), assignments and JUnit test suites using parameterized test cases and theorems. In case

mernst
Highlight
What will the tool do? By now you should know your approach. (You should also have started implementation.)

mernst
Highlight
I think you mean the input is a set of Javadoc tags, not a single one. Please clarify.

mernst
Highlight
Please expand on this. Give specifics of where you will get yours. What is your actual plan?
One idea, beyond the 7 or 8 I put on my board, is to use Jdoctor itself to generate training data. That data may not be perfoct, but at least it will be plentiful.

mernst
Highlight
You have had enough time to formulate preliminary answers to these questions, and to start implementing them.
Give those answers. Being vague here prevents me from helping you. If you have not thought through this, that is a serious problem.

the quantity of training data is insufficient, we may also consider creating synthetic data by
detecting program invariants with systems like Daikon ​[4]​ ​[5]​.

● Will the NN help us discover new rules and patterns for translating program specifications, will
they be interpretable, and will they make sense to a human and be intuitive enough to think of?

● Are there specific JavaDoc tags that cause our NN to make incorrect predictions but are easily
and consistently translated correctly by JDoctor?

● Will the NN be more generalizable to other programming languages than JDoctor’s handcrafted
rules? Can it achieve higher accuracy than JDoctor on the Javadoc tag translation task?

Contribution
The contributions of this project will be:

● To evaluate the suitability of using Neural Networks to translate language-specific descriptors to
generate program specifications and its applicability to other languages.

● To measure the effectiveness (see evaluation section) of our approach and compare it with
JDoctor, Toradocu (before JDoctor) ​[6]​ and @tComment ​[7]​.

● Our approach resolves a number of questions mentioned in the previous section.
● To demonstrate the portability and adaptability of our approach to different programming

languages if time permits.

References
[1] A. Blasi et al., “Translating Code Comments to Procedure Specifications,” in Proceedings of the 27th

ACM SIGSOFT International Symposium on Software Testing and Analysis, New York, NY, USA,
2018, pp. 242–253.

[2] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers use documentation: the state of
the practice,” IEEE Software, vol. 20, no. 6, pp. 35–39, Nov. 2003.

[3] D. Schreck, V. Dallmeier, and T. Zimmermann, “How documentation evolves over time,” in Ninth
international workshop on Principles of software evolution in conjunction with the 6th ESEC/FSE joint
meeting - IWPSE ’07, Dubrovnik, Croatia, 2007, p. 4.

[4] M. D. Ernst et al., “The Daikon System for Dynamic Detection of Likely Invariants,” Sci. Comput.
Program., vol. 69, no. 1–3, pp. 35–45, Dec. 2007.

[5] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically Discovering Likely Program
Invariants to Support Program Evolution,” in Proceedings of the 21st International Conference on
Software Engineering, New York, NY, USA, 1999, pp. 213–224.

[6] “Toradocu-Randoop (Manual) Evaluation. Feb-2018,” GitLab, Feb-2018. [Online]. Available:
https://gitlab.cs.washington.edu/randoop/toradocu-manual-evaluation-feb-2018/tree/commons-math.
[Accessed: 12-Apr-2019].

[7] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@tComment: Testing Javadoc Comments to Detect
Comment-Code Inconsistencies,” in Proceedings of the 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, Washington, DC, USA, 2012, pp. 260–269.

https://www.zotero.org/google-docs/?UWSQA6
https://www.zotero.org/google-docs/?dXqZq4
https://www.zotero.org/google-docs/?29JqX0
https://www.zotero.org/google-docs/?DMfCcf
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
https://www.zotero.org/google-docs/?HUd1e9
mernst
Highlight
This seems like a research question that you may want to answer in your research. The first two bullet points were about the design of your approach. Separate those out, don't just put them in an undifferentiated "Questions" section.

mernst
Highlight
This doesn't seem interesting, since JDoctor is not supposed to do that. It is an interesting question whether your tool can generalize.

mernst
Highlight
Those are not all research questions.

