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Motivation 

All empirical fields rely on valid statistical analyses. Unfortunately, conducting valid statistical 
analyses is challenging. There are two interconnected challenges: picking the correct statistical 
test to test a hypothesis and applying the test to the appropriate data. Tea [2] aims to address 
the former challenge by automating test selection. However, Tea requires the data to be in long 
format, a common denormalized format. Tea only guarantees correct application of statistical 
tests to data when this assumption is met. Any errors made during data formatting ("wrangling") 
prior to use in Tea programs goes unnoticed. Tea's current inability to detect semantically 
incorrect data in long format threatens the validity of its analyses, which ultimately undermines 
its goal. This is a problem present in other tools, such as R and Python packages (e.g., 
statsmodels) that assume data to be formatted in specific ways.  
 
As an example, consider an analyst's task of comparing the prices of cars across two different 
years. Suppose the dataset contains the following columns: Car model, Price in 1990 (as 
measured in dollars - e.g., 100,000), and Price in 2000 (as measured in a percentage change 
from the price in 1990- e.g., -10). 
 
When the analyst reformats the dataset into long format, they collapse the two price columns 
into one and add a year column. The reformatted dataset now has the following columns: Car 
model, Price, and Year.  However, the analyst forgot to change the units of the "Price in 2000." 
As a result, the resulting "Price" column has values of mixed units (implicit). All the values are 
still numbers, but they have semantically different meanings. Some refer to dollar prices. Others 
refer to percentages. In other words, data in the same column have incompatible ​abstract types 
[1]. 
 
Calling a statistical analysis function in R or Tea using the "Price" and "Year" columns still type 
checks and even executes, but the resulting analysis is invalid. The results are uninterpretable 
as the abstract types of data in the Price column are treated as dollar values, when they are 
really a mixture of dollar and percentage values.  
 
Aim: ​We aim to surface potential errors in statistical analyses and data wrangling code to 
prevent inconsistent abstract types in data for the same variable/column.  
 
Approach 

We anticipate creating a linter for Python that could later be integrated into Tea. The linter would 
require two programs as input: 1) data wrangling code and 2) analysis code. As output, the linter 
would highlight lines of data wrangling and analysis code that are likely the source of error.  
 



It operates in two steps on aforementioned inputs (data wrangling and data analysis programs). 
In a first step, abstract types of the columns of the input data are inferred using the data 
wrangling code. Every operation performed on the dataset reveals information about the types 
of the involved variables. For example, take the sum of two columns that provides us the 
information that both columns, as well as the result, must be of the same type. This process 
allows to refine the information about the types with every line of code. In the second step of the 
algorithm the knowledge about the abstract types is applied to the data analysis program and 
the user is alerted if inconsistencies with the inferred types are detected. This process is 
visualized in the diagram below. 

 
 
 
A fundamental tension to this system design is found in the choice between the data wrangling 
or analysis code as the source of truth for the abstract type inference. We choose to infer 
abstract types from data wrangling code because we assume the wrangling code is more 
representative of users' intentions. 
 
Given this problem, we pose the following research question and hypothesis: 
 
Research question: ​How can using abstract types help analysts detect errors in statistical 
analysis and wrangling?  
Hypothesis:​ Inferring abstract data types from data wrangling code will help analysts identify 
errors in statistical analysis and data wrangling more accurately and quickly than examining the 
wrangling and analysis code alone.  
 
To scope our project, we propose to focus on data wrangling code that uses Pandas data 
frames to format/represent the data. Pandas is a commonly used library for data analysis [3]. 
While abstract type inference is a technique that already exists, we are unaware of any 
applications of the technique to the data science domain. We also focus on data analysis code 
that utilizes common Null Hypothesis Significance Testing.  
 
Evaluation 
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We aim to evaluate our approach by conducting a user study. Our user study will involve a 
between-subjects study where half the participants try to detect errors in wrangling and analysis 
in Python scripts (from two corpora that Prof. Tim Althoff has) without using our linter and the 
other half use our linter. We will compare accuracy and time. 
 
Integration with Tea 

Our present focus is on Python scripts which wrangle data in Python and perform statistical 
tests using scipy, statsmodels, and other common libraries. We hope to explore integration with 
Tea if our approach proves promising. 
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