Homework 01

Lukas Blass - blassl
April 3, 2019

1 Collaboration

In the software development process I have always seen problems arise when
multiple contributors work together on a project or a module thereof. I have
experienced difficulties in this regard especially during projects at university,
where one tends to start a project from scratch. I especially see two critical
points that make this problem hard. The first consisting of specifying and
distributing tasks among the contributors and the second being assumptions
and definitions that change throughout the process. Let me further explain in
the following paragraphs:

Before each member of the team can start developing, (at least) a subset
of the modules has to be specified and tasks distributed among the developers.
Coming up with the correct or ideal abstractions, encapsulations and APIs out
of the blue is almost impossible. Nevertheless the process has to be started at
some point and one proceeds to specify them to the best of ones knowledge. This
process takes time, especially due to dependencies between different modules
and the resulting need for the definition of interfaces. During the development
process, the previously made assumptions then prove to be false, which can be
both frustrating and time consuming. As APIs are adapted, this needs to be
communicated to everyone using it. Often however, this communication fails to
be optimal resulting in further frustration and loss of time due to now wrongly
made assumptions by other contributors.

Of course these problems appear in an extreme form in the initial phase
of a project. As projects become larger and modules well established, sudden
changes won’t be necessary (or possible?). This might also be a reason why more
time is not dedicated to solving this problem: most developers are going to work
on an existing large repository rather than starting a project. Furthermore,
there is most likely not a real solution to the problem, since it is for example
impossible to foresee the changes that will have to be made for a specific module.

2 When to refactor

Contrary to the previously described issue this problem is solely to be traced
back to myself. During the development process I am over long stretches con-



cerned with achieving the desired functionalities and properties of my program
in the sense of correctness. During these stretches I then tend to not focus
strongly on design patterns, paradigms or cleanness, which can temporarily
lead to confusing or unclean code.

Consequently, the question comes up how often the code should be refac-
tored to match the aspired paradigms. Every time the code is uploaded to the
repository? Only after the functionality has been achieved? Or try the best
not to write messy software in the first place? Most likely there is no definite
answer and actions should be taken depending on the specific case. Depending
on who else is contributing to the software, how many components are manip-
ulated simultaneously etc., different approaches might have to be taken. I for
one regularly find myself cleaning up my own code asking myself why I didn’t
manage to write it down properly in the first place.

3 Design by Contract

I have been exposed to a very specific way of testing and verifying software at
the start of my programming career. My first lecture on software development
at university was held in the programming language FEiffel, an object-oriented
programming language that’s likely best known for its use of Design by Contract.
Using Fiffel I have been taught that one should write pre- and postconditions
(to check assumptions on function arguments and results) and class invariants
(to test properties of objects). This methodology allows function inputs and
outputs to be tested and certain assumptions to be asserted at all times. In
other words, writing conditions right alongside the code is a way of testing the
software.

However, this way of testing software, at least to my knowledge, has never
really been adopted by programmers to the full extent. And that even though
the programmer has the choice of excluding coded contracts at runtime, i.e.
having the possibility to omit the tests e.g. at deployment.

I see a cause for the lacking success of this testing methodology in the fact that
it mixes together the tests with the actual software. This downfall comes in
two ways: firstly, the programmer is forced to think of conditions and contracts
during the development process. In theory, this is a great argument for the
Design by Contract methodology, since it makes the programmer more alert to
unexpected behavior and edge cases. In practice however, programmers want
to focus on producing code first and only later focus on testing. Secondly, large
numbers of conditions in functions and class definitions reduce the cleanness
and readability of the code. To implement meaningful assertions multiple lines
of code have to be dedicated repeatedly, leading to an increase of total number
of lines and a general reduction of conciseness. I find it highly interesting that
the methodology is not applied more often, especially since there are great
objective reasons to do so. It seems however that the subjective discomfort for
the programmer prevails, which is why, I would speculate, not more developers
write tests directly in their functions and classes.



