
SpecTran: Neural Network Machine Translator of Javadoc Tags
to Java Specifications

Nikita Haduong, Qifan Lu, Samia Ibtasam
{qu,lqf96,samiai}@uw.edu

ABSTRACT
Program specifications define intended program behavior and can
range in formality and completeness from natural language com-
ments tomathematical formulations. They are important forwriting
high quality, maintainable code but are difficult to write and hence
often not written together with the program. Many tools that help
programmers write specifications exist for specific programming
languages; however, the tools often require substantial human effort
to create and are language-specific.

With recent advances in neural machine translation systems
in the natural language processing community, we investigate
whether such systems can be easily adapted to this domain of
assisting programmers with creating program specifications. We
test our system, which we call SpecTran, on the Javadoc informal
specification scheme that is shipped with the Java programming
language. Our system performs well with in-domain data, achiev-
ing up to 86.8% accuracy, but it is not robust enough to perform
comparably with out-of-domain data. We provide suggestions for
improving the system further and hope our work will motivate
others to continue this line of research.

CCS CONCEPTS
• Software Engineering;

KEYWORDS
datasets, Java, Recurrent Neural Networks, Javadoc, text tagging,
Natural Language processing
ACM Reference Format:
Nikita Haduong, Qifan Lu, Samia Ibtasam. 2018. SpecTran: Neural Network
Machine Translator of Javadoc Tags to Java Specifications. In . ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Program specifications define the intended behavior of the pro-
gram and can vary in formality and completeness from natural
language and test cases to formal mathematical expressions [3, 16].
Their primary usefulness lies in their ability to serve as oracles in
determining if programs are implemented correctly or not during
software testing. They can also be used to learn program invariants.
Formal specifications are expressions in some formal language and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CSE503 Software Engineering, ,
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

at some level of abstraction of a collection of properties some sys-
tem should satisfy [16]. Even though formal specifications are clear,
unambiguous, and can be automatically evaluated, they are often
difficult to write and debug [12]. Many programming languages
instead provide informal specification documentation schemes that
are often in the form of natural language and are intended for a
human audience. However, though these informal specifications
provide helpful information to programmers about the nature of a
program, they cannot be used directly to verify the correctness and
behavior of a program. This has motivated work in developing sys-
tems to help automatically generate formal program specifications
from informal specifications written in natural language.

Automatic documentation to formal specification translation
systems, such as JDoctor [3], Toradocu [1] and @tComment [28],
have achieved high precision in generating formal and complete
program specifications. However, these systems often require a
fair amount of human effort in constructing manual translation
rules and evaluating their efficacy. The requisite human effort slows
down the adaptation of these technologies to libraries with different
informal documentation styles or other programming languages.

Our work aims to decrease the human effort required to au-
tomatically generate formal program specifications from Javadoc
comments, while achieving similar performance as previous tools.
We introduce SpecTran, a proof-of-concept neural machine trans-
lation system for translating informal Javadoc specifications into
formal specifications, which we refer to as boolean expressions [30].
We use Javadoc over another language and its informal specifica-
tion format because a high-quality dataset with human-translated
samples was created by [3]. Java is a relatively popular program-
ming language that has been adopted extensively by companies and
individuals, and Java applications rely heavily on libraries such that
good documentation is crucial [12]. Thus, the success of SpecTran
(and other such documentation assistance tools) that work well
with Javadoc can have a high impact on the software engineering
ecosystem.

SpecTran shows that adapting a standard natural language ma-
chine translation system to the program specifications domain is
feasible. Though we test SpecTran only on one specific type of
informal specification scheme, Javadoc comments, we believe the
proof-of-concept can easily be extended to other informal specifi-
cation schemes.

1.1 Javadoc
Javadoc, initially released in 1995 with the first version of Java,
defines a standard format for documenting Java classes and gen-
erating API documentations in HTML format from Java source
code [18]. Javadoc comments are multi-line comments surrounded
by /** ... */ delimiters that are placed before class, field or method
declarations [19]. They are made up of two parts: a description of

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CSE503 Software Engineering, , Nikita Haduong, Qifan Lu, Samia Ibtasam

Figure 1: Javadoc comments with @param, @return and
@throws tags for a procedure and procedure definition

the class, field or method and a number of tags prefixed with @
that describe method details like parameters, return values [8, 20]
and exceptions [23], as shown in Figure 1.

The @param tag describes method parameters and conditions that
callers must conform to (pre-conditions), the @return tag describes
the return value of the function as well as its characteristics (normal
post-conditions), and the @throws tag describes what and when
an exception will be thrown by the function (exceptional post-
conditions).

1.2 Contributions
We show that a neural machine translation system [2, 5] is able
to translate Javadoc descriptions into boolean expressions, easily
generating legal boolean expressions. Particularly, the system does
not require special architectural designs–classical architectures
used in natural language machine translation [2, 15] can adapt
well to this task. While the performance of our system has room
for improvement, our work is a first step in creating systems that
can reduce human effort in building similar documentation-to-
specification tools. Section 9 provides suggestions for improving
the system in future work.

2 SPECTRAN
Our neural machine translation model is designed to take Javadoc
descriptions as input and produce program specifications in the
form of boolean expressions. We use the OpenNMT-py library [14],
which is an open source Pytorch implementation of OpenNMT [13],
and train on two datasets that are described in Section 3. Figure
2 describes the pipeline of our system. An example usage of the
system is for a user to input a Javadoc description:

1 @throws java.lang.NullPointerException set is null

and receive as output a boolean expression: set == null
Embeddings are concatenated to form an input to the first hidden

layer [17].

2.1 Architecture
We approach this task as a standard machine translation task (trans-
lating from a Javadoc description to a boolean expression (also
known as a condition or specification)) and, as such, use a bi-LSTM
seq2seq model with attention as proposed in [2, 29]. This archi-
tecture contains an encoder, a decoder, and an attention layer as

shown in Figure 3. The encoder consists of a 500-dimension em-
bedding layer, followed by two stacked bi-LSTM layers. Similarly,
the decoder contains two 1000-dimension LSTM layers and a 500-
dimension embedding layer. We use the concatenation-based dot-
product attention described in [29]. To predict the next token in a
sequence, we use a linear layer followed by a log softmax layer.

Some examples of the inputs (Javadoc tags) to SpecTran and the
conditions (boolean expressions) as outputs are listed below. The
first example shows a precondition and the corresponding output
of our tool.

1 INPUT:

@param map the map to decorate. map is not null

3 OUTPUT: (map==null)== false

5 INPUT:

@throws java.lang.NullPointerException set is null

7 OUTPUT: set==null

9 INPUT:

@throws java.lang.IllegalArgumentException n < 0 or

↪→ k <= 0 or k > n

11 OUTPUT: n<0 || k<=0 || k>n

2.2 Embedding layers
The embedding layer in the model numericalize input tokens as
a sequence of vectors. Embeddings map sparse, high-dimensional
inputs (such as one-hot encoded words) into lower-dimensional
vectors while still retaining semantic information in the embedding
space [11]. Embeddings are concatenated to form an input to the
first hidden layer [17]. We experiment with three different repre-
sentations: word embeddings, character embeddings and byte-pair
encoding (BPE). The weights of all embedding layers are learned
on-the-fly during the training process.

Word embeddings represent every unique word in the training
data as an N-dimensional vector (where N = 500 in our case). If
the training data contains only the words "the fox jumped and the
cat ate", then the resulting embedding will be a 6 × 500 matrix.

Character embeddings are similar to word embeddings, but
every unique character receives its own N-dimensional vector. For
example, if the input training data contains only characters "a" to
"z", then the embedding will be a 26 × 500 matrix.

Byte-pair encoding [24] compresses text by replacing the most
common pair of consecutive bytes with a byte that never occurs
in that text. This substitution is performed multiple times until
a certain number of substitutions are completed. After byte-pair
encoding, frequent arbitrary-length character sequences are usually
mapped to a single new byte, reducing the overall length of the
original text. Compressed byte sequence is then embedded in a
similar manner to character embeddings. In our experiments, we
do 500 substitutions.

The intuition behind character embeddings and BPE is that they
should be robust enough to handle unknown vocabulary in the
testing data.

SpecTran: Neural Network Machine Translator of Javadoc Tags to Java Specifications CSE503 Software Engineering, ,

Figure 2: SpecTran takes as input a Javadoc comment with optional contextual information and outputs a boolean expression.
An example of model usage is: (Input)@throws java.lang.NullPointerException set is null. and (Output) set == null.

Figure 3: An illustration of the seq2seqmodel with attention
used by SpecTran to translate a sample Javadoc comment
(@param X is always positive) to a specification (X >= 0).

3 DATA
We train and evaluate SpecTran models with different input data
and settings.

Data Sets:Weused two datasets containing Javadoc descriptions
(source input) extracted from Java libraries and their corresponding
boolean expression (target output) translations. The target outputs
in the Gold Label Dataset were created by humans and contain
ground-truth program specifications while the JDoctor Dataset
was generated by running the JDoctor tool [3] on a number of Java

libraries. Normal post-conditions (@returns tags) in the Gold
Label Dataset required post-processing to create a target output
format suitable for SpecTran because the normal post-conditions
in Gold Label Dataset could contain multiple possible outputs, or
(guard, property) pairs. The guard is a boolean Java expression
served as a predicate and property is a boolean Java expression
describing the constraint on the return value under corresponding
guard. Because our model output is the single most probable se-
quence of tokens, we merge the multiple outputs into one large
pseudo-expression (Figure 4).

Data Split: We used two methods to split datasets into train-
ing, validation and testing sets: one was a combination of all the
libraries with a random 80/10/10 split (ALL-LIB), and the other
had some libraries (2 libraries for Gold Label Dataset and 6 libraries
for JDoctor dataset) withheld from the training set (TRAIN-TEST-
SPLIT). The withheld libraries were then split randomly with a
50/50 testing/validation split.

The model input had the following variations:
(1) Textual embedding representation. See section 2.2 for

descriptions of the three representation schemes used: word
embedding, character embedding and byte-pair encoding
(BPE). Outputs from the model use the same representation
as the input. For word embeddings, we tokenize source input
with white-space and target output with an AntLR-based
Java parser1.

(2) Contextual information. Source input could consist of
solely the Javadoc descriptions, or it could also have supple-
mentary contextual information from the original method
containing the Javadoc description. Supplementary contex-
tual information was included in the source input by con-
catenating the following white-space delimited sequence
to the end of the original Javadoc description: class name,
method name, receiver name, return name, and parameter
names. Class name is the name of the class that contains the
method; method name is the name of the method; receiver
name is the name of the object represented by this keyword

1https://github.com/antlr/grammars-v4/blob/master/java9/Java9.g4

https://github.com/antlr/grammars-v4/blob/master/java9/Java9.g4

CSE503 Software Engineering, , Nikita Haduong, Qifan Lu, Samia Ibtasam

Figure 4: Normal post-conditions handling for Gold Label Datawithmultiple (guard, property) pairsmerged into one pseudo-
expression. This stepwas not needed for the JDoctor Dataset because JDoctor generates a single boolean expression for normal
post-conditions (usually using the if-then-else ternary operator).

in the method; return name is the variable name for the re-
turn value of the method; parameter names are the one or
more input parameters to the method. See Figure 5 for an
illustration of the input format.

Figure 5: Example of appending context words to the de-
scription of an @throws tag for a constructor. Note that re-
ceiver and return names are added in gold label data or by
JDoctor and are not present in the original source code.

4 METRICS
We evaluate model performance by calculating the accuracy of its
predicted output. Accuracy is calculated by counting the number
of predicted translations that are an exact match with the target
output. Additionally, as a translation task may result in output that
is semantically different but syntactically the same, we perform two
error analyses: identifier name mismatch (ID-MISMATCH) and
incompleteness (INC). Error analyses are calculated as a percentage
of the total number of errors.

(1) ID-MISMATCH occurs when the only difference between
the predicted output and actual output is an identifier name
at corresponding locations in the two outputs. Other char-
acteristics of the predicted output, such as the length of the
sequence, the order, type and content of Java tokens remain
the same. The following example shows an ID-MISMATCH
with list and level on the left-hand-side of the embedded ex-
pression.

Target Output: (list == null) == false

2 Model Output: (level == null) == false

(2) INC occurs when the predicted output is partially correct
but is incomplete. For example:

GOLD: a == null || b == null || c == null

2 PRED: a == null || b == null

Higher values for the two error analyses metrics are better be-
cause a higher ID-MISMATCH error indicates syntactically cor-
rect but semantically different predictions, and INC indicates that
the model came close to the correct prediction in some capacity as
opposed to being completely incorrect.

5 EXPERIMENTS
We split our experiment setups by dataset and vary the input set-
tings as described in Section 3.

5.1 Experiment 1: Gold Label Dataset
This experiment setup uses the Gold Label Dataset, which con-
tained 6236 (Javadoc description, specification) pairs from seven Java
libraries from the JDoctor evaluation repository [3]. After splitting
the data into training, validation and testing sets, ALL-LIB con-
tained 4988 training samples and 624 test/validation samples, and
TRAIN-TEST-SPLIT contained 4631 training samples and 802
test/validation samples.

5.2 Experiment 2: JDoctor Dataset
This experiment setup uses the Jdoctor Dataset where target out-
put was generated by using the JDoctor tool. Source input and
target output are in the same format as the Gold Label Dataset.
We first run JDoctor on six Java libraries from JDoctor evaluation
repository (excluding the Java standard library) and nine additional
Java libraries2. JDoctor can produce empty output if it does not find
a condition in the Javadoc tag, so we discard such samples from
the JDoctor dataset. After cleaning JDoctor output, the final dataset
contained 8037 samples. Splitting the data resulted in the ALL-LIB

2Additional libraries are: assertj, commons-codec, commons-io, commons-lang3,
commons-text, commons-vfs2, log4j, netty, RxJava.

SpecTran: Neural Network Machine Translator of Javadoc Tags to Java Specifications CSE503 Software Engineering, ,

Context Info All Datasets Training-Test Dataset
Accuracy ID-MISMATCH INC Accuracy ID-MISMATCH INC

Byte Pair Encoding With Context 68.9 3.6 2.4 2.4 1.4 0
Without Context 74.1 3.1 1.8 2.4 2.1 0

Word Embedding With Context 79.0 53.4 7.4 8.1 35.0 0
Without Context 77.5 57.1 7.6 12.7 47.5 2.4

Character Embedding With Context – – – – – –
Without Context 10.9 0 2.7 8.5 0 2.0

Table 1: Gold Label Dataset. ID-MISMATCH and INC error analysis results are calculated as a percentage of the total number
of errors. See Section 4 for additional descriptions of the error analyses.

Context Info All Datasets Training-Test Dataset
Accuracy ID-MISMATCH INC Accuracy ID-MISMATCH INC

Byte Pair Encoding With Context 62.2 37.5 4.3 15.4 24.3 0.6
Without Context 77.4 61.5 0.5 1.7 38.0 0.8

Word Embedding With Context 86.8 52.8 5.7 1.6 24.4 0
Without Context 76.2 70.2 3.1 4.1 46.0 1.5

Character Embedding With Context – – – – – –
Without Context 0.6 0 1.0 0 19.5 0

Table 2: JDoctor Dataset. ID-MISMATCH and INC error analysis results are calculated as a percentage of the total number of
errors. See Section 4 for additional descriptions of the error analyses.

set containing 6429 training samples with 804 test/validation sam-
ples, and TRAIN-TEST-SPLIT contained 4944 training samples
with 1546 test/validation samples.

6 RESULTS
Table 1 summarizes model results from experiment 1, and Table 2
summarizes results from experiment 2. In both experiments, ALL-
LIB performs significantly better than TRAIN-TEST-SPLIT, re-
gardless of the encoding used and whether context information is
included or not. Character embedding models performed extremely
poor, sometimes achieving zero accuracy, compared to the other
two input representation schemes, so we disregard character em-
bedding results3. Word embedding models performed best in all but
TRAIN-TEST-SPLIT in Experiment 2, where BPE greatly outper-
formed word embeddings. Adding contextual information to the
source input only appears to be helpful in the ALL-LIB setting.

We show a sample of predicted failed outputs from the two
models that perform best in experiment 1 and experiment 2 in
Table 3. The first and third examples are complex failed outputs
that are neither an ID-MISMATCH error nor anINC error. These
two examples show a model preference for generating outputs of
the form [Identifier] [Binary Operator] [Constant]. The
second and fourth examples are interesting to compare because
the output in the second example is incomplete on the left side
of the expression (order does not necessarily matter to the model)
while the fourth example shows the model adding an additional
expression and disjunction.

3Character embedding models with contextual information could not be run, as the
model calculated the input data to contain only four distinct vocabulary characters.

7 DISCUSSION
High performance in the ALL-LIB setting compared with the
TRAIN-TEST-SPLIT setting indicate that the model overfits to
the data. The vast difference in performance is a surprising result
because manual inspection of the data shows that similar samples
exist in the testing/validation data for both settings. It is possible
that due to duplicate samples within the training data, the degree
to which the model overfits is more extreme than expected. With
too many duplicate training samples, the model learns to translate
only very specific types of descriptions, and should it encounter
a description that is the same except for a different parameter
name, it will completely fail in its prediction. If both ALL-LIB
and TRAIN-TEST-SPLIT contained the same fraction of duplicate
training samples, then the large difference in performance could be
partially explained. Unfortunately, we were unable to perform this
analysis, discovering the duplicate samples too late.

With further inspection of the data, we find many of the target
output samples to be needlessly complicated. For example, the tar-
get output might be (put == null) == false, and a simpler equivalent
would be put != null. If the training data contained many varia-
tions of possible target output for the same source input, the model
might become more robust and perform better on out-of-domain
data. Additionally, these variations would be able to augment the
quantity of training data.

SpecTran learns to translate descriptions into legal (but not nec-
essarily accurate) boolean expressions but finds it difficult to use the
correct parameter names (indicated by ID-MISMATCH results).
This is in contrast with our expectations, as we expected the re-
verse to occur. We hypothesized that parameter names would be a
simple matter for the model to copy from input to prediction, and
the boolean expression/operator would be difficult because of the

CSE503 Software Engineering, , Nikita Haduong, Qifan Lu, Samia Ibtasam

Source input Gold target output Predicted output

Gold Label
Dataset

@returns the not predicate. PredicateUtils
notPredicate receiverObjectID
methodResultID predicate

(true) -> (methodResultID.equals(predicate)) (true) -> (methodResultID >= 0)

@param set the set to decorate. set is empty
and not null. ListOrderedSet
listOrderedSet receiverObjectID
methodResultID set list

receiverObjectID.isEmpty() &&
(set == null)== false (set == null) == false

JDoctor
Dataset

@throws java.lang.IllegalArgumentException
exceptions is empty.
CompositeException CompositeException
receiverObjectID methodResultID exceptions

exceptions != null && exceptions.length == 0 expectedSize <0

@returns the source or its wrapper Completable.
Completable wrap receiverObjectID
methodResultID source

true ? methodResultID .equals(source) true ? (methodResultID.equals (source)
|| methodResultID == null)

Table 3: Examples of bad predictions. All examples taken from the two best performing models: ALL-LIB+Word Embed-
dings+Context information.

possible many-to-one translation mapping (e.g., "is greater than" in
a description needs to map to ">").

8 RELATEDWORK
We review the literature of work in program specification genera-
tion, program documentation generation, natural languagemachine
translation, and semantic parsing.

8.1 Program Specification Generation
Our work is inspired by systems that can generate program specifi-
cations from program comments (natural language).

A tool for automatically deriving formal program specifications
from interfaces of Java classes was developed by [12]. The tool
probes Java classes by invoking them on dynamically generated
tests and captures the information observed during their execu-
tion as algebraic axioms. More recently, Blasi et al. proposed JDoc-
tor [3], an approach that combines pattern, lexical, and semantic
matching to translate Javadoc comments into executable proce-
dure specifications written as Java boolean expressions. JDoctor
translates Javadoc tags into program specifications with four steps:
text normalization, proposition identification, proposition trans-
lation and specification creation. Toradocu [10] is the foundation
of JDoctor and it specifically focuses on generating test oracles
for exceptional behaviors by translating @throws tags into excep-
tional post-conditions. Toradocu and JDoctor make use of similar
techniques, like subject and predicate identification and pattern
and lexical matching, to extract subject and predicates and per-
form translation. However Toradocu does not consider semantic
information of natural language in Javadoc tags.

Like Toradocu, earlier works usually focus on specific program
characteristics, rather than producing general program specifica-
tions. @tComment [28] uses pattern-matching to determine three
kinds of precondition properties related to nullness of parame-
ters. ALICS [21] infers formal specifications from natural language
text of API documents. Though ALICS performs automatic parts-of-
speech (POS) tagging on Javadoc tags, it then pattern-matches these

tags against a small set of hard-coded nouns and jargon, limiting its
generalizability. Phan et. al [22] used n-gram language models for
behavioral exceptions (a specific type of precondition) in Javadoc
documentation of the APIs in JDK and showed that using statistical
learning for inference between implementations and documenta-
tion only works for exceptional comments and does not consider
semantic knowledge. Zhou et al. [34] combine Javadoc tag transla-
tion with condition verification using SMT solvers. However their
system only works for certain types of preconditions. Finally, iCom-
ment [26] uses part of speech tagging, phrase & clause parsing, and
semantic role labeling as features in machine learning, statistical
and program analysis techniques to extract implicit program rules
from comments. aComment [27] which built on iComment [26] de-
tected code-comment inconsistencies and concurrency bugs. These
two tools still focus on special use cases, although they process
unstructred data, unlike Javadoc tags.

A common theme among these previously developed tools is the
requirement of human effort in creating special rules and pipelines
for specific languages. Our work aims to reduce the amount of
human effort required to develop such tools.

8.2 Documentation Generation
Many tools, languages and frameworks have been introduced as
documentation standards. Programmers following best practices in
documenting their code will often use such frameworks, and our
system makes use of these informal documentation practices to
produce formal specifications.

Javadoc [18], a documentation generator for Java, generates
documentation from programming objects that follow a framework
structure which includes data attributes, attribute manipulation
methods etc. The programmer must provide the objects in the
correct structure in order for Javadoc to perform correctly. JML
(Java Modeling Language), started by Gary Leavens et al. at Iowa
State University, was also introduced as a means for documenting
Java programs. It can be used to specify the detailed design of Java
classes and interfaces by adding annotations to Java source files [4].

SpecTran: Neural Network Machine Translator of Javadoc Tags to Java Specifications CSE503 Software Engineering, ,

In addition to code written by developers, third-party libraries form
an important part of programs. However, library source code can
be unavailable, a mix of other languages, and be highly complex,
optimized implementations. Thus, [32] built a tool that took Javadoc
as input, then used the Javadoc parser and various text processing
tools to generate models for that could later be used in program
analysis.

Besides JML, Eiffel was also introduced as another contract doc-
umentation language to enable programmers to include contracts
(specification elements embedded in executable code) in their code
[9]. Microsoft’s SAL is a source code annotation language that
makes explicit descriptions of how a function uses its parameters,
its assumptions during execution, and its and guarantees upon exit
[6]. These annotations are then used for automatic static analysis
tools.

8.3 Natural Language Processing and Machine
Translation

The informal documentation we use for our system is written in nat-
ural language, and becausewewant to convert this natural language
into formal specifications that are also written in a text-format, we
approach our task as a machine translation problem. Current state-
of-the-art machine translation models use deep neural networks.
These networks are trained on large quantities of translation pairs
(e.g. a source language sentence in English and its translation in the
target language). They are composed of an encoder that reads and
encodes a source sentence into a fixed-length vector and a decoder
that outputs a translation from the encoded vector [5]. However,
this method is limited by the length of sentences it can handle.
Thus, [2] proposed encoding the input sentence into a sequence
of vectors and choosing a subset of these vectors adaptively while
decoding the translation to achieve improved translation perfor-
mance. With respect to neural network architecture, [25] showed
that neural machine translation based on RNN (Recurrent Neu-
ral Networks) with long short-term memory (LSTM) performed
well on the conventional English to French phrase-based machine
translation task.

8.4 Semantic Parsing
The semantic parsing task aims to translate natural language into a
formal meaning representation such as logical forms or structured
queries ([15], [7]). In one semantic parsing work, Zhong et al. [33]
use deep neural networks to translate nature language questions
into corresponding SQL queries. Their model outperformed the
previous state-of-the-art neural semantic parsing model by Dong
and Lapata [7] that used an attention-enhanced encoder-decoder
model trained on natural language descriptions paired with mean-
ing representations. It encoded sentences and decoded logical forms
using RNN-LSTM units.

One shortcoming of semantic parsing, specifically in the SQL
synthesis space, is that the standard approach of synthesizing SQL
queries from natural language uses sequence-to-sequence-style
modeling and requires serialization of SQL queries. However, there
can be multiple equivalent serializations of the same SQL query–
this is known as the order matters problem. SQLNet [31] solved this
problem by avoiding the sequence-to-sequence structure when the

order does not matter. They utilized a dependency graph such that
one prediction can be done by taking into consideration only the
previous predictions that it depends upon.

Though state-of-the-art, these approaches treated the logical
form as an unstructured sequence and thus ignored type constraints
on well-formed programs and did not address entity linking. Thus,
[15] design a semantic parsing model that guarantees well-typed
logical forms and incorporates an entity linking embedding module
in its encoder. This module allows the model to identify question
spans that should be linked to entities. Their model architecture is
based on an encoder-decoder neural network trained on a question-
answer task. In our work, we choose to use a similar encoder-
decoder bi-LSTM network with attention as discussed in our review
of the literature.

9 CONCLUSION AND FUTUREWORK
We present a neural network model for automatically translating
Javadoc descriptions into boolean expressions. While model per-
formance is high with in-domain data and very poor with out-of-
domain data, our work shows the feasibility of applying standard
neural machine translation techniques to this new domain. Creating
better models that can reduce the amount of human effort required
to develop tools for generating informal specifications to formal
specifications would greatly benefit the quality of software and
the software development ecosystem. We believe that this line of
research is valuable and hope others will be motivated to continue
it.

Results of this work show the difficulty of developing a model
to be robust enough for out-of-domain data despite out-of-domain
data appearing fairly similar to the training data. Additionally, while
context information decreases the frequency of ID-MISMATCH
and INC errors, the overall accuracy also falls. Future work should
explore incorporating contextual information in a different manner.
These alternative ways include using a special prefix attached to
contextual information, a special delimiter that is unseen in training
data, and incorporating the information as a separate layer deeper
in the network and allowing the network to learn when the contex-
tual information is helpful. While this work explores varying the
input to the network, it uses a model architecture that is not neces-
sarily suitable for a task with limited training data. Changing the
architecture or fine-tuning a pretrained model to our specific task
is also an avenue for future investigation. Finally, it is imperative
to gather additional data or to augment the dataset in an automatic
manner.

REFERENCES
[1] 2018. Toradocu-Randoop (Manual) Evaluation. Feb-2018. https:

//gitlab.cs.washington.edu/randoop/toradocu-manual-evaluation-feb-2018/
tree/commons-math

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural Machine
Translation by Jointly Learning to Align and Translate. arXiv:1409.0473 [cs, stat]
(Sept. 2014). http://arxiv.org/abs/1409.0473 arXiv: 1409.0473.

[3] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D.
Ernst, Mauro PezzÃĺ, and Sergio Delgado Castellanos. 2018. Translating Code
Comments to Procedure Specifications. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 2018). ACM, New
York, NY, USA, 242–253. https://doi.org/10.1145/3213846.3213872 event-place:
Amsterdam, Netherlands.

[4] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry,
Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. 2005. An overview of JML

https://gitlab.cs.washington.edu/randoop/toradocu-manual-evaluation-feb-2018/tree/commons-math
https://gitlab.cs.washington.edu/randoop/toradocu-manual-evaluation-feb-2018/tree/commons-math
https://gitlab.cs.washington.edu/randoop/toradocu-manual-evaluation-feb-2018/tree/commons-math
http://arxiv.org/abs/1409.0473
https://doi.org/10.1145/3213846.3213872

CSE503 Software Engineering, , Nikita Haduong, Qifan Lu, Samia Ibtasam

tools and applications. International Journal on Software Tools for Technology
Transfer 7, 3 (June 2005), 212–232. https://doi.org/10.1007/s10009-004-0167-4

[5] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase Rep-
resentations using RNN EncoderâĂŞDecoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar,
1724–1734. https://doi.org/10.3115/v1/D14-1179

[6] corob msft. [n. d.]. SAL Annotations. https://docs.microsoft.com/en-us/cpp/
c-runtime-library/sal-annotations

[7] Li Dong and Mirella Lapata. 2016. Language to Logical Form with Neural Atten-
tion. arXiv:1601.01280 [cs] (Jan. 2016). http://arxiv.org/abs/1601.01280 arXiv:
1601.01280.

[8] DrJava.org. 2013. Documentation with Javadoc. http://www.drjava.org/docs/
user/ch10.html

[9] Eiffel Studio. 2012. Eiffel Software. https://www.eiffel.com/
[10] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro PezzÃĺ. 2016.

Automatic Generation of Oracles for Exceptional Behaviors. In Proceedings of
the 25th International Symposium on Software Testing and Analysis (ISSTA 2016).
ACM, New York, NY, USA, 213–224. https://doi.org/10.1145/2931037.2931061
event-place: SaarbrÃĳcken, Germany.

[11] Google. [n. d.]. Embeddings: Translating to a Lower-Dimensional Space | Ma-
chine Learning Crash Course. https://developers.google.com/machine-learning/
crash-course/embeddings/translating-to-a-lower-dimensional-space

[12] Johannes Henkel, Christoph Reichenbach, and Amer Diwan. 2004. Discovering
Algebraic Specifications for Java Classes.

[13] http://opennmt.net/. 2019. Open Source Neural Machine Translation in PyTorch.
Contribute to OpenNMT/OpenNMT-py development by creating an account on
GitHub. https://github.com/OpenNMT/OpenNMT-py original-date: 2017-02-
22T19:01:50Z.

[14] http://opennmt.net/. 2019. Open Source Neural Machine Translation in Torch.
Contribute to OpenNMT/OpenNMT development by creating an account on
GitHub. https://github.com/OpenNMT/OpenNMT original-date: 2016-10-
24T16:09:20Z.

[15] Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gardner. 2017. Neural Semantic
Parsing with Type Constraints for Semi-Structured Tables. 1516–1526. https:
//doi.org/10.18653/v1/D17-1160

[16] Axel van Lamsweerde. 2000. Formal Specification: A Roadmap. In Proceedings of
the Conference on The Future of Software Engineering (ICSE ’00). ACM, New York,
NY, USA, 147–159. https://doi.org/10.1145/336512.336546 event-place: Limerick,
Ireland.

[17] Thang Luong, Michael Kayser, and Christopher D. Manning. 2015. Deep Neural
LanguageModels forMachine Translation. In Proceedings of the Nineteenth Confer-
ence on Computational Natural Language Learning. Association for Computational
Linguistics, Beijing, China, 305–309. https://doi.org/10.18653/v1/K15-1031

[18] Oracle. 1993. javadoc-The Java API Documentation Generator.
https://docs.oracle.com/javase/7/docs/technotes/tools/solaris/javadoc.html#
processingofsourcefiles

[19] Oracle. 2012. How to Write Doc Comments for the Javadoc Tool. https:
//www.oracle.com/technetwork/articles/javase/index-137868.html

[20] Oracle. 2013. How to Write Doc Comments for the Javadoc Tool.
https://www.oracle.com/technetwork/java/javase/documentation/
writingdoccomments-137785.html#principles

[21] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit
Paradkar. 2012. Inferring method specifications from natural language API
descriptions. In 2012 34th International Conference on Software Engineering (ICSE).
IEEE, Zurich, 815–825. https://doi.org/10.1109/ICSE.2012.6227137

[22] Hung Phan, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh Rajan. 2017. Sta-
tistical Learning for Inference Between Implementations and Documentation.
In Proceedings of the 39th International Conference on Software Engineering: New
Ideas and Emerging Results Track (ICSE-NIER ’17). IEEE Press, Piscataway, NJ,
USA, 27–30. https://doi.org/10.1109/ICSE-NIER.2017.9 event-place: Buenos
Aires, Argentina.

[23] Daniel Schreck, Valentin Dallmeier, and Thomas Zimmermann. 2007. How
documentation evolves over time. In Ninth international workshop on Principles
of software evolution in conjunction with the 6th ESEC/FSE joint meeting - IWPSE
’07. ACM Press, Dubrovnik, Croatia, 4. https://doi.org/10.1145/1294948.1294952

[24] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2015. Neural Machine
Translation of Rare Words with Subword Units. CoRR abs/1508.07909 (2015).
arXiv:1508.07909 http://arxiv.org/abs/1508.07909

[25] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence Learn-
ing with Neural Networks. In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 2 (NIPS’14). MIT Press, Cam-
bridge, MA, USA, 3104–3112. http://dl.acm.org/citation.cfm?id=2969033.2969173
event-place: Montreal, Canada.

[26] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. [n. d.]. /* iComment:
Bugs or Bad Comments? */. ([n. d.]), 14.

[27] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. 2011. aComment: mining anno-
tations from comments and code to detect interrupt related concurrency bugs. In
Proceeding of the 33rd international conference on Software engineering - ICSE ’11.
ACM Press, Waikiki, Honolulu, HI, USA, 11. https://doi.org/10.1145/1985793.
1985796

[28] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tCom-
ment: Testing Javadoc Comments to Detect Comment-Code Inconsistencies. In
Proceedings of the 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation (ICST ’12). IEEE Computer Society, Washington, DC,
USA, 260–269. https://doi.org/10.1109/ICST.2012.106

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. arXiv:1706.03762 [cs] (June 2017). http://arxiv.org/abs/1706.03762
arXiv: 1706.03762.

[30] E. Weyuker, T. Goradia, and A. Singh. 1994. Automatically generating test data
from a Boolean specification. IEEE Transactions on Software Engineering 20, 5
(May 1994), 353–363. https://doi.org/10.1109/32.286420

[31] Xiaojun Xu, Chang Liu, and Dawn Song. 2017. SQLNet: Generating Struc-
tured Queries From Natural Language Without Reinforcement Learning.
arXiv:1711.04436 [cs] (Nov. 2017). http://arxiv.org/abs/1711.04436 arXiv:
1711.04436.

[32] Juan Zhai, Jianjun Huang, Shiqing Ma, Xiangyu Zhang, Lin Tan, Jianhua Zhao,
and Feng Qin. 2016. Automatic model generation from documentation for Java
API functions. In Proceedings of the 38th International Conference on Software
Engineering - ICSE ’16. ACM Press, Austin, Texas, 380–391. https://doi.org/10.
1145/2884781.2884881

[33] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Gener-
ating Structured Queries from Natural Language using Reinforcement Learn-
ing. arXiv:1709.00103 [cs] (Aug. 2017). http://arxiv.org/abs/1709.00103 arXiv:
1709.00103.

[34] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and
Harald Gall. 2017. Analyzing APIs Documentation and Code to Detect Directive
Defects. In Proceedings of the 39th International Conference on Software Engineering
(ICSE ’17). IEEE Press, Piscataway, NJ, USA, 27–37. https://doi.org/10.1109/ICSE.
2017.11 event-place: Buenos Aires, Argentina.

https://doi.org/10.1007/s10009-004-0167-4
https://doi.org/10.3115/v1/D14-1179
https://docs.microsoft.com/en-us/cpp/c-runtime-library/sal-annotations
https://docs.microsoft.com/en-us/cpp/c-runtime-library/sal-annotations
http://arxiv.org/abs/1601.01280
http://www.drjava.org/docs/user/ch10.html
http://www.drjava.org/docs/user/ch10.html
https://www.eiffel.com/
https://doi.org/10.1145/2931037.2931061
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://github.com/OpenNMT/OpenNMT-py
https://github.com/OpenNMT/OpenNMT
https://doi.org/10.18653/v1/D17-1160
https://doi.org/10.18653/v1/D17-1160
https://doi.org/10.1145/336512.336546
https://doi.org/10.18653/v1/K15-1031
https://docs.oracle.com/javase/7/docs/technotes/tools/solaris/javadoc.html#processingofsourcefiles
https://docs.oracle.com/javase/7/docs/technotes/tools/solaris/javadoc.html#processingofsourcefiles
https://www.oracle.com/technetwork/articles/javase/index-137868.html
https://www.oracle.com/technetwork/articles/javase/index-137868.html
https://www.oracle.com/technetwork/java/javase/documentation/writingdoccomments-137785.html#principles
https://www.oracle.com/technetwork/java/javase/documentation/writingdoccomments-137785.html#principles
https://doi.org/10.1109/ICSE.2012.6227137
https://doi.org/10.1109/ICSE-NIER.2017.9
https://doi.org/10.1145/1294948.1294952
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
http://dl.acm.org/citation.cfm?id=2969033.2969173
https://doi.org/10.1145/1985793.1985796
https://doi.org/10.1145/1985793.1985796
https://doi.org/10.1109/ICST.2012.106
http://arxiv.org/abs/1706.03762
https://doi.org/10.1109/32.286420
http://arxiv.org/abs/1711.04436
https://doi.org/10.1145/2884781.2884881
https://doi.org/10.1145/2884781.2884881
http://arxiv.org/abs/1709.00103
https://doi.org/10.1109/ICSE.2017.11
https://doi.org/10.1109/ICSE.2017.11

	Abstract
	1 Introduction
	1.1 Javadoc
	1.2 Contributions

	2 SpecTran
	2.1 Architecture
	2.2 Embedding layers

	3 Data
	4 Metrics
	5 Experiments
	5.1 Experiment 1: Gold Label Dataset
	5.2 Experiment 2: JDoctor Dataset

	6 Results
	7 Discussion
	8 Related Work
	8.1 Program Specification Generation
	8.2 Documentation Generation
	8.3 Natural Language Processing and Machine Translation
	8.4 Semantic Parsing

	9 Conclusion and Future Work
	References

