

Project CSE 503

UITalk: Enabling Blind and Visually Impaired Developers to Edit Visual
Web Layouts

Venkatesh Potluri (vpotluri), Christine Chen (chenc55), Liang He (lianghe)

Section 1: MOTIVATION
Access to information about user interface layouts is essential to accomplish many tasks, ranging
from the ability to better navigate User Interfaces (UIs) to the ability to build one’s own
representation of ideas (e.g., prototypes), thoughts (e.g., blogs) and online presence (e.g.,
personal and professional websites). The UI is the first thing smartphone app developers are
taught to build [11, 12]. Despite the emphasis on visual interfaces, existing tools for Blind and
Visually Impaired (BVI) developers, such as IDEs and screen readers, do not provide the
necessary information to build a well-designed visual interface, which conforms to visual design
guidelines such as consistent spacing, proper alignment of UI elements, and proper arrangement
of layout across screens of different sizes. In other words, though the underlying code (XAML
for windows, Android XML for Android, and CSS for web) is inherently accessible, the outputs
(or the effects of changing this code) are not accessible to a BVI developer. This leads to an
important open question: How can BVI developers independently make meaningful changes to
the visual design of a webpage that conform to design guidelines?
To answer this question, we:

a) Create touch-based interaction techniques that allow BVI developers to edit the visual design
of webpage UIs.

b) Identify a set of common design guidelines and provide a mechanism that checks that the
webpage UI changes BVI developers make conform to design guidelines.

1.1: Goals, Contributions, and User Scenario

Our primary goal is to enable BVI developers to independently edit webpages without sighted
assistance and without breaking visual design guidelines. In doing this, we focus on enabling
blind users to edit the CSS corresponding to a webpage. To achieve this goal, we (i) introduce a
new way for BVI developers to edit the CSS file (in addition to editing via a code editor) -- touch
based interactions with audio feedback on an accessible canvas (tablet); (ii) implement a
validator that checks for violations of three design guidelines when the webpage is edited; and
(iii) create a server that links the accessible canvas, validator, and the code editor.
For our work, we restrict our investigation and solution to the context of webpage design. We
assume that the user of our tool is a BVI developer with web programming knowledge and
experience.
The following is an example scenario of how a user might interact with our system: Say Alice is
a BVI developer and wishes to edit her webpage. She opens the UI Talk app on her tablet (which
displays a representation of her webpage) and opens up the VSCode code editor and enables the
UITalk extension (which opens the CSS file for editing). On the tablet, she uses free exploration

(by dragging her finger on the screen) and audio feedback to locate the heading element she
wishes to modify. This gives Alice a spatial understanding of the webpage layout. She uses
gestures to change the font to Helvetica. UITalk rejects this change, because there are more than
three types of fonts on the webpage. This means that the CSS file and webpage representation on
the tablet are not modified. VSCode announces the specific design guideline violated (typeface
consistency) and the line number in the CSS file corresponding to the attempted change. With
this information, Alice now knows how to make a valid change and can do so via the tablet or
the code editor. To make a valid change, Alice now selects Times (a font already applied to other
elements on the webpage) for this heading. VSCode now announces the font change, the line
number that has been updated in the CSS file, and that the change has been accepted. The CSS
file and the webpage representation on the tablet are now updated.

Section 2: Related Work
This section introduces prior work as well as current efforts towards improving the accessibility
of developer tools and approaches for BVI programmers.

2.1: Programming Environment Accessibility

The general accessibility literature for BVI developers spans IDEs, teaching methodologies, and
introducing BVI individuals to programming. Subsequent discussion is restricted to work that
assumes prior programming experience.
Audio-based feedback and enhanced code navigation have been the two major approaches to
assist BVI developers. For the former, one of the first artifacts of non-visual access to code was
Emacspeak [13], where the system introduced several interesting audio-based approaches with
respect to providing semantic information about programs. There have been several attempts
such as the Wicked Audio Debugger [15], SodBeans [16], and CodeTalk [10] that facilitate
debugging through audio feedback. Schanzer et al. present a tool that allows users to navigate
code at an Abstract Syntax Tree (AST) level [14]. In one of the largest interview studies with
blind software developers, none of the participants did UI development [1]. This speaks to the
lack of solutions for BVI UI development. Our work addresses this gap; it is one of the very few
efforts in addition to the recent effort to enable blind users to edit spatial layout [5]. Unlike [5],
the UITalk system leverages a user’s existing touch screen interaction capabilities and existing
devices to modify visual web layouts.

2.2: Touch Screen and Gesture Accessibility

Prior work has investigated gestures [6], capacitive widgets [3], tactile toolkits [7], and physical
feedback [2] to enable and enhance blind users’ interactions with touch screens. The UITalk
system provides a set of touch-based interaction techniques to support UI design for BVI
developers. SlideRule [8] suggests design principles (e.g., risk-free exploration for non-visual
touch screen interactions). These design principles have been adapted by mainstream screen
readers such as VoiceOver and TalkBack. Kane et al. also dive into specific gestures and
limitations in touch screen interactions for BVI users [6]. Our work leverages guidelines and
limitations suggested in this prior work to design interactions on an accessible canvas—a touch
screen tablet—to modify visual parameters of layouts. Our gesture set for spatial layout editing
(explained in subsequent parts of the document) is based on key ideas provided by these
explorations of screen reader accessibility. Our proposed interactions enable risk-free exploration

and use multi-touch gestures for activating commands—guidelines provided by [8]. UITalk
differs from prior touch screen explorations by using a touch screen for webpage development
(i.e. modification of webpage elements). UITalk is one of the very few systems, in addition to
Blocks4All [19], that uses accessible touch screens as input for programming.

Section 3: TECHNICAL DETAILS
We built a system that enables BVI developers to edit the webpage UI while conforming to
visual design guidelines. The system consists of an accessible canvas (on a tablet), a code editor
(on a computer), and the UITalk controller. Figure 1 shows an overview of our system: (1) The
BVI developer explores the webpage elements on the accessible canvas or edits the CSS file in a
code editor through audio feedback; (2) The UITalk controller receives the proposed updates
from the accessible canvas or the notification from the code editor; (3) The diff processor in the
UITalk controller processes the proposed updates from the canvas by updating the CSS file; (4)
The validator checks that the updates conform to the specified design guidelines; (5) If the
updates pass the validator, the UITalk controller sends the accessible canvas information to
update its representation of the webpage and announces the status of changes in the code editor.
If the UI updates violate the guidelines, the updates made to the CSS file are reverted. Each
module (accessible canvas, code editor, and the UITalk controller) will be described in the
following subsections.

Figure 1. The overview of UITalk system (solid arrows show the data flow and dashed arrows mean

actions made to the CSS file).

3.1: Module 1: Accessible Canvas

To allow the BVI developers to touch and manipulate the UI elements, we built the accessible
canvas on a touch screen—an iOS app on an iPad. The app displays a representation of the
webpage, and the BVI user can perform three tasks through touch and gestures: element
navigation, element alignment, and element style property changing. A built-in text-to-speech
engine provides audio feedback on the results of the user operations. The gestures are developed
with Apple UIKit Gestures1. For testing and debugging, a webpage (HTML and CSS files) was
manually created. Figure 2 shows the original webpage and the template created. The webpage is

1 Apple UIKit Gestures:
https://developer.apple.com/documentation/uikit/touches_presses_and_gestures/handling_uikit_gestures

generated following W3C standards2. Currently, the following HTML tags are supported: <div>,
<h1>, <p>, <a>, , and .

Figure 2. The manually created webpage wireframe (b) based on one team member’s personal website
(a) is used for debugging and testing. (c) shows the app version of the webpage on an iPad.

3.1.1: UITalk Gestures

A set of touchscreen gestures was created for the following three tasks: navigating HTML
elements, aligning HTML elements, and adjusting element style properties. UITalk gestures are
created specifically for webpage UI design by combining the standard Apple UIKit gestures
(e.g., tap, pinch, swipe, rotate) and the suggestions by [6] (e.g., using the tablet’s edge).
For element navigation, the BVI developer taps on the touch screen and the canvas tells the
developer which UI element is being touched via audio feedback. Then, the developer can
navigate the HTML container structure by dragging the finger around on the screen. To align
multiple elements, the BVI developer must select elements first as candidates for alignment by
double tapping them. With audio feedback provided by our system, the developer can know and
decide if the target element is selected for alignment. After all desired elements are selected, the
BVI developer can perform the alignment by using the two-finger swipe gesture. For example,
swiping towards the left results in all selected elements aligning to the left. The complete list of
gestures for navigation and alignment are shown in Table 1. The BVI developer can switch to
making element property changes by executing three-finger triple taps on the touch screen.

Table 1. The gestures for UI element navigation and alignment.

Operation Gestures Operation Description

Locating an element Touch and move Indicating the currently selected element

Aligning elements

Double taps
Selecting an element that is ready for alignment,
reporting all the elements that have been selected
for alignment so far

Two-finger swipe left Aligning the elements to the left
Two-finger swipe
right Aligning the elements to the right

Two-finger swipe up Aligning the elements to the top

2 W3C standards: https://www.w3.org/standards/

Two-finger swipe
down Aligning the elements to the bottom

Element style property
adjusting mode Two-finger triple taps Entering element property editing mode

Table 2. The gestures for UI element property adjustment (shaded rows indicate mode switching operations)

UI Properties
Gestures (assuming already
in element property
adjusting mode)

Audio Feedback Applicable UI
Elements

Width

1. Tap any point on either
horizontal edge of the
tablet

2. One-finger moving
horizontally to change the
width value

Read out the width All

Height

1. Tap any point on either
vertical edge of the tablet

2. One-finger moving vertically
to change the height value

Read out the height All

Margin/padding
Editing Mode

Four-finger long press on
the canvas to switch
between margin and
padding editing

Read out editing
mode All

Margins/paddings

1. One-finger
left/up/right/down swipe to
indicate the
left/top/right/bottom
making/padding editing

2. If it is top/bottom
margin/padding, one-finger
moving vertically to adjust
the value

3. If it is left/right
margin/padding, one-finger
moving horizontally to
adjust the value

Read out the value

All

Background
Mode Three-finger long press Read out editing

mode All

Background color

1. One-finger swipe right to
select the next color

2. One-finger swipe left to
select the previous color

Read out the color All excluding &

Foreground Mode Two-finger long press Read out editing
mode All

Font color 1. One-finger swipe right to
select the next color

Read out the color All excluding
<div>

2. One-finger swipe left to
select the previous color

Font size

1. One-finger swipe up to
increase the font size by
1px

2. One-finger swipe down to
decrease the font size by
1px

Read out the font
size

All excluding
<div>

Typeface

1. Two-finger swipe right to
select the next typeface

2. Two-finger swipe left to
select the previous typeface

Read out the
typeface

All excluding
<div>

Submit Changes Three-finger triple taps

Clear Changes Rotate toward a certain
angle

In the UI element property changing mode, the BVI developer can change seven properties of the
UI elements using the gestures shown in Table 2. After submitting the most recent edit, the BVI
developer can continue changing other properties of the currently selected element in the
property changing mode. In the future, we are open to extending the set of gestures to support
more properties.
To implement the above gestures, we add one layer on top of the iOS app for touch detection and
gesture recognition. Since the UITalk system is not using the built-in voiceover provided by iOS,
it maintains a structure of all UI elements of the webpage to support the free exploration of UI
elements by the BVI user. When the user touches the screen, the system captures the finger’s
position and computes which element underneath the touch/gesture detection layer is being
touched.

3.2: Module 2: Code Editor

Besides making modifications to UI elements on the accessible canvas, the BVI developer can
also directly edit the CSS code in a code editor using a keyboard. The system utilizes Microsoft’s
Visual Studio Code3. While the IDE choice might not be very important for non-BVI developers,
it is particularly salient in our case as VS Code is one of the few IDEs that is accessible to BVI
developers.
To connect VSCode with the UITalk controller, a custom-made VSCode extension pings the
server when the user saves changes to the CSS file. This kicks off the processing described in
section 3.3.1. The extension also allows for VSCode to receive messages from the UITalk
controller. These messages are displayed as pop-up windows in the editor and are announced by
the screen reader.

3.3: Module 3: UITalk Controller

The UITalk controller has two parts: (i) a diff processor that translates proposed updates from the
accessible canvas into a format understandable by the code editor and vice versa and

3 Microsoft Visual Studio Code: https://code.visualstudio.com/

disseminates the validated results; and (ii) a validator that checks if the proposed updates violate
design guidelines.

3.3.1: Diff Processor

This section walks through the diff processor functionality.

At a high level:
1. The diff processor receives a proposed change.

2. The working copy of the CSS file is updated.
3. The working copy is evaluated by the validator.
4. If it passes, the working copy is checkpointed, the accessible canvas is updated, and the

code editor announces the update.
5. If the working copy is rejected, the working copy gets reverted to the last checkpoint, the

accessible canvas is not updated, and the code editor announces the rejection.
The rest of the section describes underlying implementation details. If the proposed changes
come from the accessible canvas, they are encapsulated in a JSON package as follows (note that
there may be more than one key-value pair representing the proposed updates):

{[html_element_id]@[property_being_modified]: [updated_value]}

A proposed change arriving from the code editor is a message notifying the diff processor that
changes have been made to the working copy.
In order for the working copy of the CSS file to be evaluated by the validator, it must be
converted into a JSON representation. Note that this is the same data format that the accessible
canvas uses to update its webpage representation. Thus, if the validator accepts the changes, this
JSON representation is what is sent to update the accessible canvas.
If a proposed change from the accessible canvas is accepted/rejected, the code editor announces
a message of the following form:

“UPDATE FROM ACCESSIBLE CANVAS: Attempted to change [property] of [html_element] from [old value] to
[new value] at line number [#]. STATUS: [ACCEPTED or REJECTED]. THE FOLLOWING DESIGN
GUIDELINES WERE VIOLATED: [Design Guidelines]]”

If a proposed change from the code editor is accepted/rejected, the code editor announces a
message of the following form:

"UPDATE FROM CODE EDITOR [ACCEPTED or REJECTED. THE FOLLOWING DESIGN GUIDELINES
WERE VIOLATED: [Design Guidelines]]"

3.3.2: Guideline Validator

Once the diff processor updates the working copy (or the file is modified through the code
editor), the controller invokes our validator. The validator uses the JSON representation
mentioned in the previous section to check if the following design guidelines [18, 4] are
violated: typeface consistency, spacing consistency, and color consistency.

Typeface consistency. Too many variations in font types can be distracting, confusing, and
borderline annoying. A common recommendation is to use a maximum of three different
typefaces [20]. In our approach, the check happens as follows:

• For each HTML element that contains text (e.g., <p>, <h1…h6>, etc.), check typeface.

o If typeface occurs for the first time, increment counter by one.

• If counter > 3: result is false. Return result. Else: result is true. Return result.
Spacing consistency. Horizontal and vertical rhythms are equally important in a webpage. Varied
vertical or horizontal spacing causes visual noise. Consistent spacing between grids (if elements
are organized inside grids) creates cleaner content that can be easier to consume. The check
proceeds as follows:

• Check horizontal spacing consistency.

o For each element, get all siblings of that element.

§ If number of siblings (including the current element) < 3: result is true and
check proceeds to the next element.

§ Else:

• If the sum of the right margin of the first element and the left
margin of the second element is the same for every two adjacent
elements: result is true. Else: result is false. Return false.

• Check vertical spacing consistency.

o For each element, get all siblings of that element.

§ If number of siblings (including the current element) < 3: result is true and
check proceeds to the next element.

§ Else:

• If the sum of the bottom margin of the first element and the top
margin of the second element is the same for every two adjacent
elements: result is true. Else: result is false. Return false.

• If result is true for both horizonal spacing consistency and vertical spacing consistency:
return true [guideline is not violated]. Else: result is false. Return false [guideline is
violated].

Color consistency. Color is used to group related items and similar colors infer a similarity
among objects. UI elements should share the same color scheme, for example, all hyperlinks
should have the same color throughout the webpage.

The color consistency check happens as follows:

• For each element that contains text, check the type and color.
o If the color of a particular type is different from what has been seen before for the

said type, result is false and stop check. Else: result is true and proceed to the
next element.

• Return result.

Section 4: EVALUATION AND RESULTS
A preliminary evaluation of our prototype with an external participant was performed. This
evaluation consisted of 3 parts: evaluation of participant’s current webpage development
strategies, evaluation of participant’s use of UITalk system, and post-study interview. The
participant is congenitally blind with no light perception. He is a professional software engineer
and also has his own website. The participant’s responses were audio recorded with his consent,
and one member of the research team took notes during the study session.

Section 4.1: Evaluating Current Webpage Development Strategies

The goal of this section was to understand the current strategies our participant follows to design
and develop a webpage. The following questions were asked:

• Did you design any webpage?
• How did you go about making design decisions on how the webpage should look?
• For the webpages you built, what tools did you use?
• When was the last time you updated a webpage?
• What were the updates about?
• How did you update the website? What tools did you use to update your website?

Following this, the participant was presented with a blank tablet and asked to explain the layout
of his website. This was necessary to observe the approach the participant takes to explain his
webpage without any tactile or audio feedback. These observations were used to better explain
the template to users.

Section 4.2: UITalk Introduction and Testing

In the second part, the participant was introduced to the UITalk system. First, the webpage
template was explained. Then, the participant was allowed to freely explore the template by
touch. After the free exploration, the participant was asked to describe his understanding of the
layout of the webpage. Note, he had audio feedback provided by the system.
After the introduction session, the participant performed three tasks (Table 3).

Table 3. Assigned tasks in the user evaluation
Task Expected Outcome

1. The participant is asked to
change the typeface of the bio
paragraph.

Three typefaces have been used on the webpage: Helvetica,
Times, and Arial. The typeface of the bio paragraph uses Times.
If the participant changes that typeface to either Helvetica or
Arial, the change would not break the design guideline.
Otherwise, the typeface consistency guideline would be violated.

2. The participant is asked to
increase the bottom margin of the
second hyperlink in the left sidebar
of the webpage.

This change will lead to a violation of spacing consistency. The
participant will need to change the bottom margins of the other
three hyperlinks to make the vertical spacing consistent.

3. The participant is asked to left
align the image and the bio in the
left sidebar.

Change Accepted.

Section 4.3: Post-Study Interview

After the task session, the participant was asked to rate the system according to the system
usability scale [17] as well as answer the following questions:

• Did the system provide enough information for completing these tasks?
• What more information did you expect the expect had given you?
• What was easy?
• What was confusing?
• What features should be added?

Section 4.4: Results

Web Development Strategies: The participant used his friend’s template for his website and
performed content-based edits using a plaintext editor (Notepad). The participant also provided
insight about his strategy for template selection:

“I try to pick templates that are more flexible than others, so that even …if I add more
content, the likelihood of things messing [up] the layout is low.”

For subsequent edits, the participant had the changes checked by a sighted friend or colleague. In
cases where the updates were just about adding and linking to a file, the participant was able to
make the necessary changes independently.

“And sometimes because it’s just a personal website, I take the risk. If I just want to
upload a document, for example, for someone to see, I’ll just upload it and not really
worry that much about how it is appearing because often times it’s just going to be a
page of its own.”

UITalk Tasks: The participant completed all the three tasks successfully with some prompts
from the team (in terms of gestures). Towards the later part of the study, the participant could
perform the gestures with less assistance.
Our participant had some difficulty in accurately performing some gestures. However, on testing
the gestures with the BVI developer on our team, the observed success rate was higher (the
success rate was not quantified). Earlier research [8] shows that there needs to be an accuracy
tradeoff when designing touch screen interactions for BVI users. However, existing gesture
recognition APIs did not allow for this. While existing screen readers do accommodate for
accuracy errors, there is no information on how they do this.
Post-Study Interview: Table 4 presents the results of the SUS questionnaire. Note that the
sample size is 1 and, thus, these results may not be conclusive of the general
effectiveness/usability of our approach.

Table 4. The result of the SUS questionnaire (1: strongly disagree; 5: strongly agree)

I think that I would like to use the system frequently. 3

I found the system unnecessarily complex. 2

I thought the system was easy to use. 3

I think that I would need the support of a technical person to be able to use the
system.

1

I found the various functions of the system were well integrated. 1

I thought there was too much inconsistency in the system. 1

I would imagine that most people would learn to use the system very quickly. 5 (in terms of
gestures)

I found the system very cumbersome to use. 2

I felt very confident using the system. 2

I needed to learn a lot of things before I could get going with the system. 1

In terms of the information provided by the system, the participant said he would have preferred
to have access to a list of changes (and be able to revert specific changes). The participant also
wanted the tool to give a better sense of the overall layout of the page. The participant was not
convinced that touch was the most effective means of making modifications and suggested using
alternative input-output techniques (e.g. voice interactions and the existing screen reader).

Section 5: Limitations
Our work has limitations with regards to scalability, verification of the layout changes, and
interactions on accessible canvas.

Section 5.1: Scalability and Supporting Modern Development Workflows

For this project, we assume the CSS file is formatted in a very particular way in order to
facilitate processing. We only support changes to the CSS file—we do not support creation or
deletion of HTML elements.
Currently, our validator does not check for accessibility guidelines like VizAssert [9] does.
Future versions of our validator can be expanded to check and ensure that user edits conform to
accessibility guidelines. Another limitation is the way we must “rebuild” webpages in order to
present them on the accessible canvas. While it would be ideal for our system to work with a
webpage open on a tablet browser, current limitations with screen readers as well as limitations
in the touch screen gesture APIs that operating systems expose (when accessibility services are

enabled) prevent us from achieving this. Further exploration into the way NVDA4 handles touch
screen interactions may enable us to achieve this.

Section 5.2: Verification of Edits

Our goal is to use formal verification techniques to verify that edits to visual layouts do not break
visual design guidelines. For this, we originally intended to use VizAssert. However, from our
investigation thus far, the VizAssert processing delay results in an experience that is far from
real-time. Instead, we have had to implement our own validator (note that our validator does not
check for the accessibility guideline violations that VizAssert checks for).

Section 5.3: Interactions with Accessible Canvas

It would be ideal for the accessible canvas to be able to interact with existing screen readers.
However, existing implementation of VoiceOver and the APIs Apple provides make it infeasible
to build apps with custom gestures that can function alongside VoiceOver. We have
implemented a subset of functionality that VoiceOver offers and acknowledge that it will take
some adjustment for screen reader users to work with our system. In addition, the learning curve
increases as more gestures are introduced to the BVI developer.

Section 6: Discussion and Future Work
Our preliminary investigation in this space opens up interesting research questions in the context
of verification, interaction, and skill.

6.1 Verification

It is worthwhile to investigate the best strategy to provide precise feedback on violations in real-
time. Existing approaches, such as VizAssert, that depend on formal verification do not seem to
be able to provide this real time experience.

6.2 Interactions and feedback

In this work, we explored a multi-modal (keyboard typing, touch/gesture, and audio) approach to
enable BVI developers to edit spatial UI without breaking visual design guidelines. Our decision
to use a touch screen tablet (accessible canvas) and an IDE on a desktop were drawn from a
currently unpublished study where we observed that BVI technology users had better perception
of the visual layout of apps they used on touchscreen devices in comparison to webpages
accessed through a desktop computer. Moreover, our current approach purely relies on speech
feedback. The potential use of non-speech audio cues and spatial audio (when the developer
wears headphones and it seems as though sound is coming from different directions) remains
unexplored.

6.3 Existing skillset

Existing research shows that BVI developers do not currently work on front-end technologies.
There needs to be research on whether skilled BVI developers that are well acquainted with
knowledge about CSS exist. If not, can approaches such as those proposed in our system be used
to teach CSS?

4 https://nvaccess.org

Section 7: REFERENCES
1. Albusays, K., Ludi, S., & Huenerfauth, M. (2017, October). Interviews and Observation

of Blind Software Developers at Work to Understand Code Navigation Challenges. In
Proceedings of the 19th International ACM SIGACCESS Conference on Computers and
Accessibility (pp. 91-100). ACM.

2. Bau, O., Poupyrev, I., Israr, A., & Harrison, C. (2010, October). TeslaTouch:
electrovibration for touch surfaces. In Proceedings of the 23nd annual ACM symposium
on User interface software and technology (pp. 283-292). ACM.

3. Chan, L., Müller, S., Roudaut, A., & Baudisch, P. (2012, May). CapStones and
ZebraWidgets: sensing stacks of building blocks, dials and sliders on capacitive touch
screens. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (pp. 2189-2192). ACM.

4. Leavitt, M. O., & Shneiderman, B. (2006). based web design & usability
guidelines. Background and Methodology.

5. Jingyi Li, Son Kim, Joshua A. Miele, Maneesh Agrawala, Sean Follmer. 2019. Editing
Spatial Layouts through Tactile Templates for People with Visual Impairments. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI
‘19). ACM, New York, NY, USA. DOI: https://doi.org/10.1145/3290605.3300436

6. Kane, S. K., Wobbrock, J. O., & Ladner, R. E. (2011, May). Usable gestures for blind
people: understanding preference and performance. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 413-422). ACM.

7. Kane, S. K., Morris, M. R., & Wobbrock, J. O. (2013, October). Touchplates: low-cost
tactile overlays for visually impaired touch screen users. In Proceedings of the 15th
International ACM SIGACCESS Conference on Computers and Accessibility (p. 22).
ACM.

8. Kane, S. K., Bigham, J. P., & Wobbrock, J. O. (2008, October). Slide rule: making
mobile touch screens accessible to blind people using multi-touch interaction techniques.
In Proceedings of the 10th international ACM SIGACCESS conference on Computers
and accessibility (pp. 73-80). ACM.

9. Panchekha, P., Geller, A. T., Ernst, M. D., Tatlock, Z., & Kamil, S. (2018, June).
Verifying that web pages have accessible layout. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation (pp. 1-
14). ACM.

10. Potluri, V., Vaithilingam, P., Iyengar, S., Vidya, Y., Swaminathan, M., & Srinivasa, G.
(2018, April). CodeTalk: Improving Programming Environment Accessibility for
Visually Impaired Developers. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (p. 618). ACM.

11. Build a simple user interface. Android Developers. (n.d.). Retrieved from
https://developer.android.com/training/basics/firstapp/building-ui.html

12. R., Wenderlich. (2018, July 24). Your First iOS App · Challenge: Making a
Programming To-Do List. Retrieved February 24, 2019, from
https://www.raywenderlich.com/5993-your-first-ios-app/lessons/2

13. Raman, T. V. (1996, April). Emacspeak-direct speech access. In International ACM
Conference on Assistive Technologies (pp. 32-36).

14. Schanzer, E., Bahram, S., & Krishnamurthi, S. (2019, February). Accessible AST-Based
Programming for Visually-Impaired Programmers. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education (pp. 773-779). ACM.

15. Stefik, A., Alexander, R., Patterson, R., & Brown, J. (2007, June). WAD: A feasibility
study using the wicked audio debugger. In 15th IEEE International Conference on
Program Comprehension (ICPC'07) (pp. 69-80). IEEE.

16. Stefik, A., Haywood, A., Mansoor, S., Dunda, B., & Garcia, D. (2009, May). Sodbeans.
In 2009 IEEE 17th International Conference on Program Comprehension (pp. 293-294).
IEEE.

17. System usability scale: https://www.usability.gov/how-to-and-tools/methods/system-
usability-scale.html

18. Web design principles: https://theblog.adobe.com/12-dos-donts-web-design-2/
19. Lauren R. Milne and Richard E. Ladner. 2018. Blocks4All: Overcoming Accessibility Barriers to

Blocks Programming for Children with Visual Impairments. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI '18). ACM, New York, NY, USA,
Paper 69, 10 pages. DOI: https://doi.org/10.1145/3173574.3173643

20. Typography Elements Everyone Needs to Understand: https://bit.ly/2LOMQSL

