
CSE 503: Software Engineering

Winter 2018

Lecturer: Michael Ernst

503 Software Engineering Research

• Not: how to write good software
– and get a good job at Amazon/Google/Microsoft

• Research methods and ideas in SE
– this may make you a more thoughtful developer

What does my program do?

Program analysis techniques:
• Abstract interpretation (dataflow, symbolic exec.)
• Type systems (checking, inference, non-standard types)
• Model checking (explicit vs. symbolic, abstraction)
• Analysis back-ends &decision procedures (BDDs, SAT, SMT)
• Testing (generation, selection, prioritization)
• Dynamic analysis (profiling)
• Refactoring
• Slicing
• Verification
• More

Abstract interpretation
(or “dataflow analysis”)

• Statically (over-)estimate what the program
may do at run time

• “Run” your program statically
– Choose an abstract domain; e.g., { +, 0, - }
– Assign semantics to operators
– Start at beginning of program
– Examine possible values of variables

• Similar to unfolding the computation
• Used daily on aeronautics software

Type systems

• A type is a set of (possible) values
• Checking
• Inference
• Polymorphism
• Non-standard type systems

– view type system as a set of constraints to
compute legal refactorings

– use type inference to recover abstractions from
optimized code

Model checking

• In simplest terms, exhaustive testing
– Verify that every possible execution satisfies a given

property
– Very effective for hardware (inherently finite-state)
– Popular for concurrent software

• How to make this scale?
– Choose abstractions that lose just the right amount of

precision
• Counterexample-guided refinement

– Efficient encodings

Analysis back-ends
• Reduce one problem to another

– Often, produce a logical formula
• Reduction to SAT

– 1979: “Problem X reduces to SAT, so it is hard.”
– 2009: “Problem X reduces to SAT, so it is easy.”

• SMT (satisfiability modulo theories)
– add non-logical constructs (e.g., arithmetic) to the logical

formula
• Datalog (prolog-like; used in database community)
• Binary Decision Diagrams (BDDs)
• Boolean programs
• Theorem provers

Test generation

• Random
– Scaleable, and more effective than you think

• Symbolic
– What if statements guard a line of code?
– Compute an input that satisfies them

• Concolic (concrete + symbolic)
– Run tests, then try to slightly modify them to achieve

more coverage
• Evaluation of testing approaches

– Coverage, mutation, …

Dynamic analysis

• Testing
• Model creation

– Observe executions, generalize from them

• Type inference
• Fault localization

Refactoring

• Refactoring changes program code without
changing its meaning

• What constraints need to be generated to
preserve the meaning?

• How to explore the space of solutions?

More

• Pointer and alias analysis
• Modeling and model-based development
• Configuration management
• Code generation and code completion
• Historical analysis

– Prediction of bug-prone code

Applications

• Security
• Correctness
• Performance
• Rapid development
• System analysis
• Maintenance and evolution

Broader themes

• Precision vs. performance
• Power vs. transparency
• Static vs. dynamic
• Tuning analysis to the real problem

A limited perspective on SE

• Too many ideas in software engineering for 10
weeks

• People, process, development methodology
• Mining source code repositories (see CSE 504,

winter 2016)
• User studies (see CSE 599E1, autumn 2016)
• … much more

Format

• Lectures:
– 50%: classic background
– 50%: current research
– Lectures are interactive (and, few slides)

• Homework:
– Read research papers
– 1 in-class presentation

• Group project to put the ideas into practice
– Makes you a better researcher, in any field
– You choose a topic (suggestions are provided)
– Most projects lead to a publication or other research use

• Not a requirement, just a common outcome

Who cares?

• Intellectually exciting and deep
• Spans both “hard” and “soft” areas of

computing
• Connections to programming languages,

security, systems, architecture, databases, and
many more!

• Quals credit

	CSE 503: Software Engineering
	503 Software Engineering Research
	What does my program do?
	Abstract interpretation�(or “dataflow analysis”)
	Type systems
	Model checking
	Analysis back-ends
	Test generation
	Dynamic analysis
	Refactoring
	More
	Applications
	Broader themes
	A limited perspective on SE
	Format
	Who cares?

