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ABSTRACT
Programmers sometimes need to repeat an edit over a large code
base, e.g. when refactoring. Manually repeating an edit can be
tedious and error-prone. We propose Sloth, a tool that locates sites
that match a given template of the code to be edited. The template
consists of code in the target language’s (e.g. Java’s) concrete syntax
as well as combinators to impose complex constraints on the code
to be matched. To implement Sloth, we compile the templates to
Haskell patterns and match them on the parse tree of the source
code. Thanks to quasi quotation, generic programming and lazy
evaluation, it took little effort (∼ 200 LOC) to implement Sloth for
Java.
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1 INTRODUCTION

Often times, programmers who develop and maintain large code-
bases need to apply the same code transformation at several loca-
tions. For instance, Professor Michael Ernst maintains Daikon [6],
a large system for dynamic invariant detection that has over 100K+
lines of Java code. At times, Professor Ernst needs to perform repet-
itive edits throughout the large code base. For example, commit
11e10a changed 57 files to change for loops into for-each loops1.
Professor Ernst performed the change because for-each loops
are more readable - a developer can be sure that every element
in the traversed data collection is visited, and that the data col-
lection remains unchanged. One example of this edit is shown in
Figure 1. To convert a for loop into a for-each loop, Professor
Ernst replaces the loop header (Iterator<PptTopLevel> iPpt
= ppts.iterator(); iPpt.hasNext();) with a declaration that
names the current element (PptTopLevel ppt : ppts). The name
should match the local variable in the first line of the original body.
Note that the original loop body cannot mention the iterator iPpt
1Also known as the enhanced for.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Example edit
- for ( Iterator<PptTopLevel> iPpt = ppts.iterator();
- ; iPpt.hasNext(); ) {
- PptTopLevel ppt = iPpt.next();
- add (ppt);
- }
-----
+ for ( PptTopLevel ppt : ppts ) { add (ppt); }

Figure 2: Sloth query
for ( Iterator<`_> #i = `_; `_; ) {

`_ #x = #i.next();
`[ `! `*( #i `| #x = `_ `)* `]

}

after the first line to be eligible for the edit. In addition, the loop
body should not mutate the current element. Professor Ernst used
the search-and-replace command in emacs with a regular expres-
sion to repeat the edit on all loops in the code base. However, since
it is not obvious how to express the constraints (that the loop body
cannot mention the iterator after the first line, or mutate the current
element) in a regex, 14 changes triggered compiler errors or failed
tests. Professor Ernst then had to revert the change on those loops
one by one.

Besides regular expressions, other tools are available to program-
mers in a similar situation as Professor Ernst’s. Program transfor-
mation tools such as Stratego [2], TXL [5], and SPOON [11] operate
on the parse tree and requires the programmer to understand how
a specific parser parses the source. Specifically, if the programmer
wishes to transform for loops, she has to know that a for loop is
parsed into e.g. for_statement [for_init] [for_expression]
[for_update] [statement] in TXL. Research tools like REFAZER
[13] and LASE [8] learn repetitive edits from examples. These tools
implement learning algorithms and the user provides additional
examples to improve the matches if false negatives / false positives
occur (neither tool claims 100% precision or recall). Our seach lan-
guage can complement such tools by exposing the learned search
query to the user making the tool more robust.

Stepping back, the task of repetitive edit consists of two steps:
1. identify possible code fragments to be changed (locate), and 2.
perform some transformation on each eligible fragment (transform).
Either step can also be repeated and interleaved with the other. In
Professor Ernst’s case, he first locates and transforms all loops that
use an iterator with a regular expression, then locates the loops
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Figure 3: Initial query
for ( Iterator<PptTopLevel> iPpt = ppts.iterator();

; iPpt.hasNext(); ) {
PptTopLevel ppt = iPpt.next();
add (ppt);

}

that break the code, and finally manually transforms those loops
back to original. In this paper, we focus on helping the programmer
locate sites for repetitive edits.

We propose Sloth, a code search tool that allows programmers
to specify the syntactic structure of their code in a language that
is very close to the concrete syntax. It makes a first step towards
enabling easy and accurate repetitive edits, namely to accurately
specify properties of code to be edited with a simple user input.
Additionally, Sloth can easily be extended to other programming
languages, making it easily adoptable.

2 THE CODE SEARCH TOOL SLOTH
The following sections demonstrate the design and implementation
of Sloth and its query language Yoko. We first follow a user who
develops a search query from an example edit site. In this process
we gradually introduce parts of Yoko’s syntax and functionality.
Then we present the full language design in detail. Finally, we
present the architecture and implementation of the query compiler
and the search engine, by each of its components.

In summary, we combine three powerful tools: quasi quotation,
generic programming and lazy evaluation, to build a search in-
terface that allows the programmer to easily find desired code
fragments. Moreover, it takes little effort to implement support for
new languages: given a syntax definition and a parser, it takes a
total of under 250 LOC to implement Sloth for Java.

2.1 Developing a search query
To locate repetitive edit sites, the user passes Sloth the files to search
over as well as the search query. In the example above, the user
passes in the root of the Daikon repository and the query in Figure 2.
The user may formulate the query from existing code following the
steps below.

First, the user copies the original code in Figure 3 verbatim and
passes to Sloth. Next, the user generalizes the query by introducing
meta-variables and wild cards. The resulting partial query is in
Figure 4. A meta-variable can occur in place of any parsable Java
language construct - in this case the wild-cards ‘_ occurs in place
of expressions and statements. A meta-variable preceded by # can
match on identifiers that occur as different language constructs.
In this case, #i matches on the declared iterator name in the loop
header and its use in the body, and #xmatches on the local variable
name. The pattern on the last line ‘[ ‘_ ‘]matches on a sequence
of any statement.

Finally, the user wishes to refine the loop body in the query
with further restrictions. Since transforming a loop to a for-each
loop eliminates the iterator, the transformed body cannot use the
iterator in any way. In addition, since a for-each loop keeps the
traversed data constant, the body cannot modify the data collection.

Figure 4: Partial query
for ( Iterator<`_> #i = `_; `_; ) {

`_ #x = #i.next();
`[ `_ `]

}

Figure 5: Search language grammar
p extends grammar

:= `meta-var # any unit
| #meta-var # any identifier
| `*( p `)* # any unit containing p
| `@ | `in p # any unit contained by p
| `! p | p `| p | p `; p # combinators
| `[ p `] # a sequence of queries

meta-var := alpha-numeric | _

With this in mind, the user changes the query to assert the loop
body does not use the iterator #i after the first line and does not
assign to the current element (#x = ‘_). The negation operator
‘! filters out any result that matches the query following it, and
the nesting operator ‘*( p ‘)* matches any code containing code
that matches p. The choose operator p ‘| q matches any code
matching either p or q. In combination, ‘! ‘*( p ‘| q ‘)* filters
out any code containing parts that match either p or q.

2.2 The query language Yoko
The example exercises most features of Sloth’s query language
Yoko. Figure 5 gives the full grammar of the language. Starting
from the top, p extends Java means a query p can be any valid
Java language construct, i.e. any string that can be parsed to some
left-hand-side of a rule in a BNF-style Java grammar. We use the
Java grammar implemented by the language-java library [4]. Al-
though this makes Sloth grammar-dependent, the user need not
know the left-hand-side of the grammar, but only needs to make
sure the query does parse. We restrict the queries to match only
on parsable Java constructs to avoid transformations that break
the code: a transformation that replaces syntactically legal code
with legal code will always result in legal programs, whereas one
that replaces possibly illegal code with illegal code may not. For
example, replacing a valid while loop with a valid for loop does
not introduce syntax errors, but merely replacing the word while
with for will. By “extend”, we mean to add the following cases to
every rule in the Java grammar.

Yoko extends the Java grammar first with meta-variables. Ameta-
variable can occur in place of any valid Java construct, and has the
syntax of a back tick ‘ followed by an alpha-numeric string, or a
wild card _. A meta-variable matches on any valid Java construct. In
terms of the parse tree, a meta-variable can match on any subtree in
the source. Sometimes the same identifiers can appear as different
language constructs. For example, in Figure 3 iPpt appears both as
the LHS of a declaration in the header and also as an expression in
the body. We therefore introduce a different meta-variable #i that
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matches on any identifier but ignores what construct the identifier
parses to.

The nesting query ‘*( p ‘)* where p is another query matches
any code that contains a part that matches p. In terms of parse tree,
it matches on any tree with a subtree that matches p.

The context query ‘in p where p is a query matches any code
that is contained by some code that matches p. In terms of parse
tree, this means the matched code has an ancestor that matches
p. In addition, the symbol ‘@ can occur anywhere a wild card can
occur in p. In that case, ‘in p matches any code c whose ancestor
matches p[c/@].

There are three logical combinators for queries: negation ‘!,
conjunction ‘; and disjunction ‘|. They have their usual meaning:
‘! p matches any code that does not match p, p ; q matches any
code that matches both p and q, and p | q matches any code that
matches either p or q.

Finally, the sequence query ‘[ p ‘]matches a sequence of code,
each of which matches p. For Java, only statements and declarations
can occur in sequences.

2.3 The search engine
As Figure 6 shows, Sloth takes as inputs the search query and
source file(s) to search over. It outputs a list of matches, each of
which contains a code fragment that matches the query and the
fragment’s location in the source. This information can be further
post-processed to help the user locate the matches. Sloth provides
a simple post-processor that prints out the code surrounding the
matched fragments.

Internally, Sloth consists of two major components: the query
compiler and the search engine. It also needs to parse the source file,
but parsers for most major languages already exist2 and it is easy
to make Sloth work with existing parsers. The following sections
describe each component in detail, and makes it clear the cost (in
LOC) to add a new language support for Sloth.

2.3.1 Modifying the Parser. After the user inputs the query and
source, Sloth first parses the source. In our implementation for Java
we directly use existing Java parser [4]. There exist a vast array of
parsers for different languages, so we do not consider authoring a
parser as part of the effort to implement Sloth.

We slightly modify the Java parser to parse the search queries.
This involves changes to 3 files: 1. We add constructors correspond-
ing to Yoko’s grammar to the data types that define the Haskell
representation of the Java parse tree (syntax) (14 LOC). 2. We add
the operator symbols to the lexer (12 LOC). 3. We change each
parsing rule to consume the added operators and produce terms in
the extended syntax (36 LOC). In total, we needed to add / change
62 LOC to obtain a parser for Yoko.

2.3.2 FromQueries to Patterns. Next, Sloth translates the parsed
query into a pattern match on the parsed tree from the Java source.
Since patterns in Haskell are not first-class, we cannot construct
a pattern from the user input at runtime. Instead we compile the
parsed query to generate Template Haskell code. This adds the

2C parser at https://hackage.haskell.org/package/language-c,
Python parser at https://hackage.haskell.org/package/language-python
and JavaScript parser at https://hackage.haskell.org/package/language-javascript

benefit of checking the validity of the query before it’s matched:
because Template Haskell is generated at Haskell’s compile time,
the compiler will throw an error if the query is invalid.

The acute reader may have realized: if we cannot construct
Haskell patterns at runtime, shouldn’t we also have to parse Yoko
at compile time? Indeed! This is made possible by quasi-quotes
[9], a macro-expansion mechanism that translates embedded DSL
code to Haskell code. We simply define a quasi-quoter that calls the
Yoko parser to produce a parse tree (Figure 7), then call the generic
function dataToPatQ to reify the parse tree into Template Haskell
patterns.

When passed const Nothing as first argument, dataToPatQ
takes as second argument a query containing only Java code (i.e.
no query combinators) and produces a (constant) Haskell pattern
that matches exactly the code in the supplied query. We then ex-
tend dataToPatQ to also handle meta-variables and other query
combinators. Each extension is implemented as a generic function
that operate on any node in the parsed query, as follows.

2.3.3 Query Combinators. Handling meta-variable boils down
to defining anti-quotations [9]. We simply supply the following
pair of functions that translate meta-variables occurring in place of
expressions and statements, correspondingly. The functions trans-
late any meta-variable in the query into a Haskell binder pattern of
the same name.

antiExpPat :: Java.Syntax.Exp -> Maybe (Q TH.Pat)
antiExpPat (MetaExp s) = Just $ varP (mkName s)
antiExpPat _ = Nothing

antiStmtPat :: Java.Syntax.Stmt -> Maybe (Q TH.Pat)
antiStmtPat (MetaStmt s) = Just $ varP (mkName s)
antiStmtPat _ = Nothing

Then, we add the functions as extensions to dataToPatQ:

exts = ( const Nothing `extQ` antiExpPat
`extQ` antiStmtPat )

java :: QuasiQuoter
java = QuasiQuoter { ... quotePat = \str ->

let Right c = ...
in dataToPatQ exts c

... }

After meta variables, the second simplest operator to implement
is negation. Intuitively, a negated query ‘! p would first try to
match a piece of code with p. If the match succeeds, the negated
query will not match on the code; otherwise it will match. The
following implementation of negate takes advantage of Haskell’s
view pattern extension [15], which allows the programmer to call
arbitrary function in a pattern and match on the result. The im-
plementation of all of the remaining operators depend on view
patterns.

enot :: Java.Exp -> Maybe (Q TH.Pat)
enot (ENot p) = Just

[p|(\case { $(p_) -> False; _ -> True }) -> True|]
where p_ = dataToPatQ exts p

enot _ = Nothing
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Figure 6: Architectural Diagram of Sloth
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Figure 7: Quasi quotation for Yoko
yoko :: QuasiQuoter
yoko = QuasiQuoter {

quoteExp = undefined
, quotePat = \str ->

let Right c = parse pattern str
in dataToPatQ (const Nothing) c

, quoteType = undefined
, quoteDec = undefined
}

enot converts any negation ENot p to the template Haskell pat-
tern on the right hand side. Just is the identity constructor for
Haskell’s “option” data type Maybe. The quotation [p| ... |]
reflects its enclosed Haskell code into template Haskell representa-
tion. f -> p is the syntax for view patterns, where f is a function
and p is a pattern. In this case, p is the constant pattern True and f
is the lambda-case \case {$(p_) -> False; _ -> True}, which
returns False if the input matches p_ and True otherwise. Finally,
we obtain p_ by calling dataToPatQ to translate the negated query
p. The last line means if a pattern is not a negation, return it as-is.
We implement the other two logical combinators (conjunction and
disjunction) in a similar way and leave out the implementation here
for conciseness.

The next interesting operator is the nesting operator ‘*( p
‘)*’. Recall it matches on any code that contains code matching p.

To implement this, we first obtain a list of all n’s subtrees with the
generic function universe. Then we use a list comprehension to
select only the subtrees that match p_. Note that for every match,
a dummy number 42 is added to the list. The actual content of the
list does not matter, since we only care about whether it is empty
or not. A view pattern matches the resulting list against the pattern
_:_ which asserts the list is non-empty, i.e. there is at least one
subtree of n that matches p.

shass :: Java.Stmt -> Maybe (Q TH.Pat)
shass (SHasS p) = Just

[p| (\n -> [ 42 | $(p_) <- universe n]) -> _:_ |]
where p_ = dataToPatQ ext p

shass _ = Nothing

One last implementation detail concerns meta-variables. In a
Yoko query, the same meta-variable can occur at more than one
place. This is incompatible with Haskell, which require patterns
to be linear, i.e. each binder can only occur once. To support non-
linear queries in Yoko, we post-process the generated pattern by
renaming all binders to eliminate repeated patterns, and add in
guards that declare equality among all binders that used to share
the same name. For example, a query ‘x * ‘x compiles to the
Haskell pattern Mul x ((== x) -> True).

2.3.4 The matching engine. Having translated the query into
a pattern match, Sloth then matches the pattern on all nodes in
the parse tree. Thanks to generic programming in Haskell, we can
simply implement the matching engine with a list comprehension:
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grep :: CompilationUnit -> (Exp -> Bool) -> [Exp]
grep prog match = [ a | a <- universeBi prog, match a]

matches :: [Exp]
matches = grep prog1 match1

where match1 [java| `! 1 |] = True
match1 _ = False

The function grep takes a parsed source prog and a matching
function match. match tells if an expression should be matched. On
the right hand side, it creates a list comprehension. Each element
in the list is drawn from the result universeBi prog, which is all
subtrees in prog. Then, we select the trees matching the query by
adding the guard match a to the comprehension. matches invokes
grep by passing a parsed program prog1 and the matching function
match1, which returns true when the input matches the Yoko query
inside the [java| ... |] quasi quote. In this case, Sloth returns
all expressions that is not the literal 1.

Given the operation [ a | a <- universeBi prog, match
a] above, the reader may be concerned about performance: if
universe returns a list of all subtrees in n, wouldn’t it be very
expensive to evaluate and match each of them to the pattern p?
Even worse, the nesting query also calls universe, so every sub-
tree may be evaluated more than once. Thanks to Haskell’s lazy
evaluation [7], the operation is in fact quite cheap. Lazy evaluation
only evaluates the parts of data that is used. In our case, a subtree
x is only evaluated until it matches/fails to match the pattern p.
For example, a 100-line while loop is only evaluated to while (
unevaluated ) { unevaluated } if it is matched against while
( _ ) { _ }. In short, the cost of a match is proportional to the
program size and the size of matched code in terms of parse tree
nodes.

3 CASE STUDIES
To evaluate Sloth, we conduct a case study on real world software.
We take as benchmarks 8 sets of repetitive edits from real-world
software: one set supplied by Professor Ernst from the Daikon
project [6], and 7 other sets collected by [16] from Eclipse SWT. For
each set of repetitive edit, we formulate queries both in Sloth and
regular expression, and compare the expressiveness of the patterns
based on properties of the code matched. Table 1 shows the queries
in Sloth as well as in regular expression, together with comments
on the regex query if it cannot match on code that contains the
fragment to be edited. The following sections discuss the queries
in detail, each of which demonstrates the importance of some of
Sloth’s design decisions or discusses possible improvements. Later,
we perform a qualitative analysis of Sloth and discuss the results in
the final subsection.

Q 1, 3: Only Match Parsable Code
The most important design decision in Sloth is the adoption of
concrete patterns, i.e. search queries that use concrete Java syntax
but only match on parsable code fragments. This is critical when
the matched code is long and complex. In Q1, the queries should
match on if statements that check the nullness of a field and then
assign data from the field to a local variable. The regex pattern
cannot match on the entire if statement, because regex cannot

specify that two pair of braces are at the same level. Q3 raises a
similar issue: to match on balanced parentheses, the regex pattern
must assert there is no open parenthesis between them, therefore
missing some matches.

Although sometimes matching on partial statements or expres-
sions is sufficient for the edit, we argue that matching on parsable
units helps ensure the correctness of the transformation. A transfor-
mation that replaces legal code fragments with legal code fragments
is less likely to break the program than a transformation that re-
places illegal code with illegal code.

Q 1, 2, 4, 6, 7: Query Combinators
Users familiar with regex may easily pick up Sloth, since the se-
mantics of the operators closely resemble those found in regex.
For example, the user may think of the nesting operator *(p)* as
similar to the regex .*p.*, the sequence operator [p] as p*, and
meta-variables #x . . . #x as character classes with capturing
groups ([\w]) . . . $1.

Q 2, 5: Ignores Comments (Shortcoming)
When formulating queries 2 & 5, we discovered an important short-
coming of Sloth. Since the Java parser that Sloth builds on ig-
nores comments, no queries can match on comments. However,
sometimes comments contain helpful information. For example,
Q2 should match on all if statements that implement unicode
traitement. Although all such statements are commented with //--
unicode traitement, our pattern in Sloth cannot take advantage
of that information. We had to inspect a few statements to extract
the common patterns among them and then encode the patterns
with a Sloth query. Regex, on the other hand, very easily matches
on the comments.

One possible improvement to Sloth to handle comments is as
follows: once a piece of code is matched, look up the commented
code from the original file and match the comments to some user
supplied regular expression pattern. Then the query may look like
if (‘_) { //-*\s* unicode traitement }.

Q 4: No Semantic Specification (Shortcoming)
The Sloth query for Q4 did not cover all changes committed to the
Eclipse repository. The commit message states that the change was
to refactor a local variable for an object to a field. This involves
change all reference to / operations on the old local variable to refer
to / operate on the field instead. These references and operations
can be easily identified by a dependency analysis.

To support semantic specification such as dependency in Sloth,
we may interface with off-the-shelf analysis tools and allow the
user to annotate their queries with types.

Evaluation of Sloth
We evaluate the effectiveness of our tool in terms of precision and
recall. We define recall as the ratio of the number of edit sites a
tool matches over the number of all edit sites; we define precision
as the ratio of correct matches over the number of all matches. We
say that a match is correct when it consists of code that is edited.
Each correct match should also contain only one intended edit site.
Without these constraints, a trivial match that returns the entire
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Table 1: Query comparison : Sloth vs regex

Sloth query Regex query
Q1 (Patch 1) if (this.#x != null) {

int[] range = (int[]) this.#x.get(node);
‘[ ‘_ ‘] }

if (this.(\w+) != null) {\s*
int[] range = (int[]) this.$1.get(node);

Q2 (Patch 2 & 3) if (‘*(
(( this.currentCharacter =
this.source [this.currentPosition++])
== ’\\’)
‘)*) ‘*( (c1 = Character.getNumericValue(‘_))
> 15 ‘)*}

//-*\s* unicode traitement

Q3 (Patch 4) switch (‘_) {
case SWT.LINE_DOT:
case SWT.LINE_DASH:
case SWT.LINE_DASHDOT:
case SWT.LINE_DASHDOTDOT:
data.state &= ~LINE_STYLE; }

switch ([ˆ(]*) {\s*
case SWT.LINE_DOT:\s*
case SWT.LINE_DASH:\s*
case SWT.LINE_DASHDOT:\s*
case SWT.LINE_DASHDOTDOT:\s*
data.state &= ~LINE_STYLE;\s*}

Q4 (Patch 5) if (*(item)*) *(redraw)* item.* redraw ([ˆ(]*)

Q5 (Patch 6) if (control instanceof Tree) { effect =
new TreeDragAndDropEffect(‘_); } else ‘_

// (Drag and drop|DND) effects

Q6 (Patch 7) for (int i = 0; i < digits; i++)
adjustment.#x *= 10;
return (int) (adjustment.#x + 0.5);

for (int i = 0; i < digits; i++)
adjustment.(\w+) *= 10;
return (int) (adjustment.$1 + 0.5);

Q7 (Daikon) for (Iterator<‘_> #i = ‘*( iterator ‘)*;
#i.hasNext(); )
{ ‘_ #x = #i.next();
‘[ ‘! ‘( ‘*( #i ‘)* ‘| ‘*( #x = ‘_ ‘)* ‘)‘] }

for (\((?>[ˆ()]+|(?1))*\))
(\{(?>[ˆ{}]+|(?1))*\}

Table 2: Performance of Sloth

match lo-
cations

actual ed-
its

Precision Recall

Q1 (Patch 1) 8 6 0.75 1
Q2 (Patch 2 & 3) 16 24 1 0.6
Q3 (Patch 4) 15 9 0.6 1
Q4 (Patch 5) 82(22) 48 1 0.45
Q5 (Patch 6) 51(6) 6 1 1
Q6 (Patch 7) 13 10 0.7 1
Q7 (Daikon) 172 168+2+(2) 1 1

source can achieve perfect recall and precision. For instance, if the
code edit was from for(int i = 0; i < n; i++) adj.size
*= 10 to for(int i = 0; i < n; i++) adjacent.size *=
10, and the search query looks for adj.size inside a for loop, a
correct match is for(int i = 0; i < n; i++) adj.size *=
10. It cannot be just adj.size. Also, it cannot include additional
statements.

We present the results of applying Sloth in Table 2. Except for Q2
and Q4, Sloth achieves a recall of 1. The reason for Q2 not achieving
perfect recall is that some of the actual match locations have an else
block following the if block. In order to match on all such locations,

the user has to specify a query as shown in Table 1 followed by an
else block that matches any node. This is a limitation of our current
approach and we can fix this by matching on syntax tree nodes of
both the types - if and ifelsewhenever conditionals are involved.
Q4 has low recall because we do not support dependency analysis as
discussed in the previous subsection. For our experiments, we gave
the entire directory of the old patch as input to Sloth. For queries Q4
and Q5, the first number under match locations shows the number
of matches found in all files under the given directory. The number
within paranthesis shows the match locations in just the files where
the developer made an edit. We calculate the precision and recall
using this number.

In the case of Daikon (Q7), Professor Ernst wishes to convert
all eligible for loops into for-each loops. A for loop can only be
converted to a for-each loop if it iterates over all elements of a data
collection, and the data collection should implement the Iterable
interface. In addition, the new loop body cannot use the iterator or
modify the elements. Therefore, we use the query in the last row to
match on eligible loops. for (Iterator<‘_> #i = ‘*( iterator
‘)*; #i.hasNext(); ) { }matches on all for loops that call the
iterator method and access the elements of the data structure. ‘_
#x = #i.next(); ensures that the first statement in all such for
loops must access the next element of the iterable data structure.
The last part of the query, ‘[ ‘! ‘( ‘*( #i ‘)* ‘| ‘*( #x =
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‘_ ‘)* ‘)‘] specifies that within the for loop, there should be
no access to the index variable and the object being iterated over
should not be modified.

We ran Sloth with the query on the entire Daikon code base
before the first commit related to changing to for-each loops. We
identify eligible loops from the commit history. From the 168 loops
converted to for-each loops, Sloth matched on all and 4 additional
loops. We presented the 4 extra matches to Professor Ernst, who
confirmed that two are indeed loops eligible to be converted. The
other two were not changed only because an upstream repository
also contains them, and changing would complicate comparison.
Since the reason for not changing the last two loops does not relate
to program semantics, we do not consider them as false positives.

Within the 168 loops that were changed, only 152 were changed
in the first commit. One change from the first commit triggered a
compiler error and was reverted in the following commit. In total,
it took 5 commits spanning more than 10 years to convert all 170
loops. Using Sloth, Professor Ernst could have converted them in a
single commit.

4 RELATEDWORK
One of the most widely used tool for code search is regular ex-
pressions (regex), e.g. the Unix grep. The benefit of regex is its
independence of language syntax, and the ability to match on mal-
formed code as well as comments. That flexibility also implies a
search-and-replace with regex may introduce syntax errors. For
example, the regex {.*} would match { print ’}’; } until the
first } in the print statement, and miss out the balanced curly brack-
ets. Replacing the matched code with a new block will introduce
parse errors (unmatched quote and unmatched closing parenthesis).
Although there are extended versions of regex – like Perl’s regex
extension [12] – that allows the user to match on balanced match-
ing symbols, there are other complications in the language syntax
that would require the program to be parsed. Since without a parser,
the user would have to be able to define a regex for any arbitrary
language construct, which is equivalent to defining a parser with
regex.

There are other refactoring tools that have the notion of blocks
and expressions. For example, existing IDEs like Eclipse and IntelliJ
can automatically discover code patterns of bad practice by applying
predefined patterns of code transformations [1]. These tools all use
a set of internal predefined patterns and are extremely useful for
code refactoring. A search language like Sloth could be helpful for
creating custom refactoring tools that can easily be written by the
programmer.

Tools like REFAZER [13] (for C#) and LASE [8] (for Java) aim to
automatically learn repetitive edits from edit examples. They are
helpful when the learned edits reflect the user’s intent. In practice,
these tools work very well in that they are able to correctly learn the
code transformations from the given examples. Our language can
be complementary to these tools by augmenting their workflow:
the learning tool can display to the user its learned template in
our language, and then the user can fine tune the template to more
accurately match intended code fragments.

The technique of having a pattern language for code search has
been studied in [10]. This paper proposes a pattern language that

extends the source language with special symbols similar to our
tool. The program source code is transformed into a syntax tree
and the user query is converted into a finite state automaton. As a
result, this can match balanced paranthesis. This automaton takes
the syntax tree as its input and generates a match if it reaches a final
state. Overall, the algorithm takes O(N 2) where N is the number
of nodes in the syntax tree of the source code. Our tool on the
other hand takes O(N) and also has the advantage of being easily
extensible to other languages.

Stratego [3] is a similar tool to ours, that enables transformations
with patternmatching on the parse tree. It provides a concrete syntax
extension [14] that uses the same language as one tries to match for
also writing the search queries in. By using antiquotations in the
query, you create a pattern that can be matched against the target
language. On the backend, the pattern gets converted to Stratego’s
abstract syntax tree format. The concrete syntax extension is limited
though in that the antiquotations only can define a placeholder
matching any node in the parse tree. There is no possibility to
match for negations in a specific chunk. E.g. matching for a node
that doesn’t contain the usage of a specific variable.

5 LIMITATIONS OF OUR APPROACH
(1) While performing our experiments, we realized that match-

ing on comments can be extremely useful sometimes. Our
tool does not support this currently.

(2) Although matching on the syntactic structure of the code
yields precise results, this requires the user to know the
structure of the code. For instance, if a user wants to search
for code inside an if block, but the actual code also has an
else following it, then the user needs to specify the else block
as part of their query.

(3) Our implementation currently does not support searching
for code within a context.

(4) We also do not have support for dependence analysis. Having
this would help express a richer class of queries such as
searching for variables of a given type.
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