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ABSTRACT
TensorFlow [1] is a popular open-source machine learning
framework with a declarative data flow graph paradigm.
A TensorFlow program involves manipulating data in the
form of a tensor (multi-dimensional data structure, i.e. n-
dimension array), with a corresponding ‘shape’ property.
The shape dictates whether certain operations (e.g. convo-
lution, dot product, etc.) are legal (similar to a type system)
and is inferred or checked at runtime. Finding ‘shape’ op-
eration bugs before runtime would significantly improve
programmer’s efficiency but is not currently supported by
TensorFlow or any third-party tools. An initial survey of
Deep Learning Framework users found that only checking
shapes at runtime slows development, and the majority of
respondents indicated interest in a tool that would solve
this problem. We introduce ShapeChecker, a Vim extension
which uses type-checking and type-inference techniques to
provide faster feedback to developers about the evaluated
shapes of variables.
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1 INTRODUCTION
Background on TensorFlow Programs
TensorFlow operates under a declarative programming
framework: rather than executing immediately, each Tensor-
Flow API call returns an ‘operation’ node which is added to
the underlying TensorFlow graph. When the programmer
wants to execute an operation, they call a function named
“session.run” on an operation or list of operations. This call
finds the minimum subgraph necessary to execute the listed
operations and runs each sequentially. For example:

# a, b, c, d are tensors (vectors) with shape [4,].

a = tf.constant([1,1,1,1])

b = tf.constant([1,2,3,4])

c = tf.constant([9,8,7,6])

d = tf.add(a, b) # does not execute immediately

e = tf.sub(c, b) # does not execute immediately

res1 = sess.run(d) # evaluates only a, b, and d

# returns [2, 3, 4, 5]

res2 = sess.run(e) # evaluates only b, c, and e

# returns [8, 6, 4, 2]

When calling session.run, the programmer provides concrete
values for all the necessary inputs to the graph. During graph
construction, concrete values are unknown, but oftentimes
the input shape is known. Special TensorFlow objects known
as “placeholders” allow users to represent the shape of an
input during the graph construction phase, but do not require
real input values until later in the program. The shape of
these placeholder input tensors can be specified when they
are declared or discovered at runtime based on the input
data. To specify an unknown or dynamic dimension in the
graph, programmers use the “None” keyword for the specific
dimension. These inputs are fed into additional operations
such as convolutions and matrix multiplications.

Sample Program Excerpt:

ph = tf.placeholder(tf.float32, [None, 224, 224, 3])

# takes some number of images that are of type

float32 and shape 224x224x3.

conv1_weights = tf.get_variable('conv1_weights', [5,

5, 4, 64]) # creates a weight tensor of 5x5

convolutions for 4 channel inputs and 64 channel

outputs

conv1 = tf.nn.conv2d(ph, conv1_weights, [1,1,1,1],

'SAME') # convolves ph with conv1_weights with

stride 1 and padding SAME.

This code is incorrect because the number of channels in the
input (3) should match the third dimension of the convolu-
tional weight tensor (4). TensorFlow Runtime Error:

Stack trace

...

File "/usr/local/lib/python2.7/site-packages/

tensorflow/python/framework/common_shapes.py",

line 691, in _call_cpp_shape_fn_impl

raise ValueError(err.message)

ValueError: Dimensions must be equal, but are 3 and

4 for 'Conv2D' (op: 'Conv2D') with input shapes:

[?,224,224,3], [5,5,4,64].

Although TensorFlow is a Python-based library, Python
is only used as a meta language to define a dataflow graph.
All TensorFlow’s numerical computations are not performed



in Python [17]. This characteristic makes debugging Ten-
sorFlow code particularly difficult in Python, because tradi-
tional Python analysis tools are not able to check Tensor-
Flow’s backend program. Many machine learning packages,
such as PyTorch [14], Theano [3], Caffe [9] etc., also define
computational graphs which are later executed using high-
performance C++ and CUDA code. Because of the shared
coding paradigm, developing an approach to shape-check
TensorFlow programs is beneficial to many other tensor-type
machine learning development tools.

Motivation
As of January 2018, there are more than 4500 questions on
Stackoverflow.com for TensorFlow’s shape functionality. To
find out if there was a real use case for ShapeChecker, we sur-
veyed 23 ML framework users with a variety of development
experience with different deep learning frameworks.

Excerpts From Initial Survey.

• 82.6% of these users says they have struggled with
“shape” in machine learning packages.

• On a scale of 1 - 7 (very unhelpful - very helpful), 34.8%
users our proposed tool would be very helpful (7)

• 82.6% users think the proposed tool would be helpful
(score 5-7).

• 87% of users already have their graph construction in
one or a small number of functions.

It can also be very useful to view shapes of intermediate
computations during the development process. When decid-
ing how large to make a weight tensor, researchers consider
the complexity of the learning problem (how many weights
must be learned) as well as the computational complexity
of the network (how many floating point operations must
be run). This information is currently only available to the
programmer at runtime, which creates additional friction
when developing a neural network architecture. Another
common use-case is reimplementing an existing network
architecture described in a paper. These designs are often
given only pictorially rather than with code or with the exact
operations written down, so it may be easier for the program-
mer to iteratively write a line of code, check that it matches
the paper’s figure, and repeat.
Determining shapes statically is not an easy task. It re-

quires tracking each variable’s state throughout the execu-
tion of a program, and often requires specific estimates of
shape values in order to be useful. This is especially difficult
in dynamic languages like Python. Both static and dynamic
analysis suffer from TensorFlow’s underlying complexity;
TensorFlow contains over 2700 operations which each act
as different transfer functions, and it is time consuming to
model all of these operations in shape checking programs.

Contribution
We implemented a user-friendly Vim extension that lets
machine learning programmers check the validity of their
graph construction and examine the shape of the tensor
before running the code, and investigate the effectiveness
of such a tool. In this work, we have implemented shape
inference for a modern machine learning library, translating
knowledge from programming languages to the machine
learning domain, and markedly improved productivity for
machine learning programmers.

2 RELATEDWORK
Only a few research groups have studied multi-dimensional
array shaped properties in programming languages and sys-
tems [8, 16] in other domains, but ShapeCheck is the first to
apply shape inference to machine learning and deep learn-
ing tools, as most machine learning packages are still quite
young. For instance, TensorFlow was released in 2015 [1]
while the published shape-related work was published in the
1990s and early 2000s.

Recently, many studies have tried to improve the compu-
tational efficiency and usability of machine learning tools
[4, 5, 10]. Few have created shape checking tools for modern
machine learning software.
WALA team from IBM has just started to create

a static analysis tool for TensorFlow’s shape problem
(https://github.com/wala/ML), but their work is still in
progress. Also, WALA requires users to install its package
based on Java, which is not native to Python or TensorFlow.
Different from WALA, we are building an user-friendly and
light-weight shape checker based on dynamic analysis built
entirely in Python.
IBM Watson team created an user interface, DARVIZ, to

build deep learning models in Python’s Caffe package, and
their tool is user-friendly and interactive [15]. However, their
tool is only able to create deep learning model that reads
image or text data. Moreover, DARVIZ is unable to locate
shape bugs in their computation graph.

The shape inference used in this work is inspired by both
static and dynamic type inference in programming language
[2, 6, 7, 13]. ShapeChecker infers the concrete shape property
for each tensor instead of inferring abstract types like in
[7, 13].

3 SHAPE CHECKER
Shape Inference
We introduce a tool, ShapeChecker, which dynamically ana-
lyzes a TensorFlow program (or even a partial program), pro-
ducing annotations of useful shape information. In the case
of an inconsistency of the shapes or ranks, ShapeChecker
produces a useful error message at the point where the incon-
sistency is discovered. In many cases, intermediate shapes
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Figure 1: Abstract Interpretation Lattice for TensorFlow
Shape. The height of the lattice is bounded by the number
of dimensions in the largest possible tensor shape of 256 di-
mensions.

are useful feedback for the programmer indicating that the
code operates as expected.
ShapeChecker aids in both the debugging and the devel-

opment process. In the current TensorFlow implementation,
checking the shape is done at runtime. Developers have no
way of checking their code’s correctness other than to run
the program. However with lengthy preprocessing or other
Python computation, it may take minutes to reach the Ten-
sorFlow portion of the code. This slows the programmer
down because they must run their program, wait for the
preprocessing and TensorFlow code to run, fix a line, then
run again from the start. Our tool sidesteps this problem by
explicitly running ShapeChecker on the TensorFlow graph
construction methods separately from the rest of the pro-
gram.

User Interface
Our tool contains a Vim-integrated extension to show shape
annotation of user’s TensorFlow code from an output file
generated by ShapeChecker. Our tool also shows the an-
notations on a line-by-line basis, allowing the developer to
glance at ShapeChecker’s calculated result without inter-
rupting their thought process. The extension allows the user
to press F-4 to open a second window, with comments on
each line indicating the resulting shape and whether the line
succeeded or failed.

4 METHODS
ShapeChecker analyzes Python programs that use Tensor-
Flow by running a modified subset of the code. Users first

Figure 2: Example of the annotation output of
ShapeChecker on a TensorFlow program after pressing F-4

specify the entrypoint function names and arguments via a
specific ShapeChecker annotation comment. Our implemen-
tation locates these methods and constructs a mock program
that replaces each TensorFlow method call with a mocked
method, and runs the modified program. These mocked func-
tions do not run mathematical operations on the values of
tensors, they only perform shape-related operations and up-
date the estimate of the current shape value, checking for
inconsistencies during the updates.

Modifying the AST
To replace TensorFlow calls with the corresponding
ShapeChecker ones, ShapeChecker constructs an AST rep-
resenting the user’s program using Python’s standard AST
module. This module represents imports as a node-type of
the AST, so ShapeChecker is able to simply construct an
ImportNode for the ShapeChecker and replace the Tensor-
Flow ImportNode with the ShapeChecker ImportNode. From
there, ShapeChecker adds another temporary node that acts
as an entry point into the program, handling the construc-
tion of any Tensor arguments to match the user-annotated
suggested input.

Mocked TensorFlow Functions
The mocked functions operate on (and return) lightweight
MockTensors which only hold the shape of the tensor. All
TensorFlow graph-related functions return tensor objects (or
None), so all of our functions will return MockTensors. Due
to time constraints, we chose several hundred (of the sev-
eral thousand) common TensorFlow functions to mock out.
These functions are implemented to match the syntax and
behavior of the original TensorFlow function specifications.
If ShapeChecker encounters a function which has not been
mocked, ShapeChecker exits the analysis phase and returns
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Figure 3: Example of the side-by-side output of
ShapeChecker on a TensorFlow program after pressing F-3.
The annotation example is shown in line 5.

a warning to the user indicating that ShapeChecker could
not process the specific line(s).

When it is run, ShapeChecker reports errors when a user’s
code incorrectly calls TensorFlow functions, either with in-
correct or invalid shapes of variables (such as multiplying a
length 2 vector with a length 3 vector), incorrectly formatted
arguments (such as providing a tuple where a string is re-
quired), as well as syntax errors in the code. If ShapeChecker
finds a shape error, the TensorFlow program is guaranteed
to have the same issue.
There are still many TensorFlow errors that we can-

not catch. For instance it is illegal in TensorFlow to call
“tf.get_variable” twice with the same “name” argument (un-
less the reuse flag is set). Also, certain operations are only
defined on specific numerical types (some arguments are
required to be of type Tensor(int), Tensor(float) etc.). We
limited the scope of this project to shape errors since our
survey noted that shapes were an important issue, and these
other error types are usually quite easy to locate and fix.

ShapeChecker Annotations
ShapeChecker requires programmers to indicate which func-
tions they wish to check using specific ShapeChecker annota-
tions, and providing sample input shapes to those functions.
This is akin to running a unit test on a subsection of code
in a larger project. This paradigm allows the programmer
to test their TensorFlow graph construction in an otherwise
incomplete program. Based on our initial survey, we have
found that the additional overhead to the programmer will
not be significant, which is especially important during de-
velopment.

The ShapeChecker annotations consists of three parts (an
example annotation can be seen in figure 2 line 5). The first

Figure 4: Example of an error reported by ShapeChecker

is the signature indicating that a method is meant to be
ananlyzed by ShapeChecker. This is always the string literal
“@ShapeChecker”. The second is the method name for a
function that should be checked. The third is an optional
set of shapes of any tensors that would be inputs to the
function. These annotations are found and parsed using a
regular expression search over the current source code file.
We require that the checked functions take no additional
arguments without default values in order to allow us to test
each method independently, similar to unit tests.

Visualizing the ShapeChecker Output
We integrated ShapeChecker with Vim to allow semi-
automatic feedback to the developer, with an optional output
file. The output file consists of a copy of the source code, with
the annotations of the shapes printed in-line as comments.
This was designed to aid during the development process
without breaking the programmer’s workflow.

If ShapeChecker finds a bug in the input TensorFlow pro-
gram, it reports the bug and source of conflicts causing the
bug in the output file, before terminating analysis, as shown
in Figure 4 of the appendix.

User Workflow
The expected user workflow is as follows:

(1) A user, in the middle of development, wishes to check
that a block of code has been ‘shaped’ correctly. They
can’t yet just run the code since they haven’t fin-
ished writing their program. They break that block
off into its own function. At the line where the func-
tion is called or above the method declaration (or
anywhere within the file), they add an annotation
‘@Shapechecker function_name’ to indicate the en-
trypoint for ShapeChecker.

(2) They press F-3 or F-4 to run ShapeChecker in Vim,
which opens a second window with the output. When
F-3 key is pressed, the shape of that variable will be
shown together with their original code, as shown in
Figure 3. When F-4 is pressed, the output shape will be
displayed in the separate window, as shown in Figure 2.
The user will see an error message if their TensorFlow
program contains shape bugs, as shown in figure 4.

(3) The user can then fix the any shape mistakes if neces-
sary before continuing development.
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Layer Type Units Filter Size Stride Padding
convolution 6 5x5 1x1 SAME
max-pool 2x2 2x2 VALID
convolution 16 5x5 1x1 VALID
max-pool 2x2 2x2 VALID
convolution 120 5x5 1x1 VALID
Fully-Connected 84
Dropout (0.5)
Fully-Connected 10

Table 1: LeNet Architecture

5 EVALUATION
Test Suite
We searched online for available TensorFlow network code in
sources such as tutorials, research blogs, official TensorFlow
examples etc. and selected 50 programs that are representa-
tive of popular Tensorflow uses. Many were from the Zero-
to-all TensorFlow tutorial repository https://github.com/
hunkim/DeepLearningZeroToAll. We ran ShapeChecker on
them, and manually compared ShapeChecker’s output with
TensorFlow’s constructed graph to ensure the accuracy and
robustness of ShapeChecker. When using ShapeChecker in
the future, we can be confident that it will catch the majority
of shape-related bugs.

Questions
Q1 Q5 Q6

Score (1-7) 5.4 2.7
Yes/No (All Yes is 100%) 82%

Table 2: This table summarizes the results from the
final survey.

Final Survey
We conducted a user-test where we provided the users with
a skeleton version of a program which operates on CIFAR-10
(a popular vision task)[11]. We asked the users to implement
a relatively simple network known as LeNet [12], shown
in table 1. After they completed the coding problem, we
surveyed them. The survey questions are below:
(1) How helpful/unhelpful did you find ShapeChecker: 1-7

(7 is very helpful).
(2) What did you like about ShapeChecker?
(3) What did you not like about ShapeChecker?
(4) What could be added to ShapeChecker that would

make it better for you?
(5) Did you find the annotation process burdensome? 1-7

(7 is very burdensome).
(6) Would you use ShapeChecker in the future?
As shown in table 2, the overall feedback was positive and

we found that users were much faster at finding, localizing,

and fixing bugs. The complete survey responses are located
in the appendix.
Based on the survey responses, we added more Tensor-

Flow functions, fixed several bugs, cleaned up the error
message handling to better localize issues, and made the
ShapeChecker annotation documentation clearer.

6 CONCLUSION AND FUTUREWORK
We have presented a novel tool using type-checking tech-
niques in TensorFlow, a new domain. The advantages of
our methodology have been demonstrated by experimen-
tal results. Future work would involve expanding the num-
ber of TensorFlow functions supported to the complete set
of Tensor functions. Other projects might consider porting
ShapeChecker to similar ML libraries using tensors such as
PyTorch or Keras. Another extension to our project would
be to integrate ShapeChecker to other IDEs (e.g. PyCharm,
Spyder, etc) and make the use of ShapeChecker more "au-
tomatic". Based on the interest demonstrated in the final
survey (table 2) in the tool, we plan to add more TensorFlow
functions and open-sourced the code on Gitlab.
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A APPENDIX: EXAMPLE OUTPUT
B APPENDIX: FINAL SURVEY RESULTS
Student 1
(1) 6
(2) I liked the instant feedback that the partial code was

right without having to run the rest of the program.
(3) It was kind of brittle. If there was a function that didn’t

exist, I had to find another.
(4) Add more TensorFlow functions.
(5) 3. I messed up the first time I wrote it and there was

no way of knowing what was wrong.
(6) Yes, if it worked on all functions.

Student 2
(1) 6
(2) The output is nice
(3) It’s not compatible with Spyder, iPython, or other mod-

ern python IDEs.
(4) More information and suggestions for convolution

operations. For instance, if it can give suggestions on
how large the stride size should be for a specific layer,
it would be great. Real time feedback is also important,
because sometimes I might forget to press F-4 key.

(5) 3. I don’t like it, but it’s okay.
(6) Yes, I will use it when writing TensorFlow models.

Student 3
(1) 5
(2) I got fast feedback about the intermediate tensor

shapes.
(3) I would have preferred an Emacs plugin. I’d also like

error messages when ShapeChecker itself isn’t work-
ing.

(4) Adding an Emacs plugin.

(5) A little (4). I got the syntax wrong initially and didn’t
get an error message so I didn’t know why it wasn’t
working.

(6) Yes, especially when extending other people’s code.

Student 4
(1) 6
(2) It was really quick and it caught some bugs.
(3) I didn’t like when it crashed.
(4) I liked the annotated code better and I didn’t want a

second window. I want a version that annotates my
code (but well formatted). I also want a version that
accepts variables in the annotation.

(5) 2.5, I messed it up at the start but it was easy to fix.
(6) Yes, if it’s easy to install.

Student 5
(1) 7
(2) It told me the shapes in real time. It gave me fast feed-

back so I didn’t have to think about the shapes myself.
(3) I don’t like that it’s not in TensorFlow directly. It was

also a bit buggy.
(4) Non-vim plugins would be good. I use Jupyter, so I

need something that works with that.
(5) 1
(6) Yes, if it worked in my code setup.

Student 6
(1) 6
(2) It lines things up in a nice way that is easy to see. It

was simple and easy to use. I especially like the view
with annotations on the code (F3).

(3) It was a bit hard to line up the row I actually cared
about when I was fixing an issue.

(4) An option to put on the right side so it’s at the end of
the line of code.

(5) 1
(6) Yes definitely.

Student 7
(1) 3
(2) It was nice to have the size right in the code while I

was writing it.
(3) It doesn’t work on some functions.
(4) Integrate with PyCharm. Add on-the-fly commenting

(it runs as I type a line) or put the comments in the
same file.

(5) 1
(6) Yes, why not. It was helpful.

Student 8
(1) 6
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(2) It was a shortcut to how I normally do debugging.
(3) It kills undos. Errors weren’t always obvious why they

were happening, if it was my code or somewhere else.
(4) Having provenience would be cool.
(5) 2
(6) No because I don’t like maintaining plugins

Student 9
(1) 5
(2) It is helpful to debug the dimensions in tensorflow
(3) N/A. There is no inconvenience, and I can always

choose to ignore the ShapeChecker result.
(4) If it can show the (hidden) parameters for each func-

tion call, it will be more helpful for debugging.
(5) 3
(6) Yes.

Student 10
(1) 4
(2) I could see how it’s useful to know about bugs before

finishing
(3) The plugin output was kind of hard to read, and was

pretty buggy.
(4) If it was more automatic somehow.
(5) 5
(6) Probably not.

Student 11
(1) 5
(2)
(3) It took some time to figure out how to use it, and I had

to factor out my code more than I would’ve otherwise.
(4)
(5) 4
(6) Sure. It’ll probably be easier to use as I use it more.
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