
Assignment 1

Daniel Gordon

UW ID: xkcd

Hours to complete: Approximately 3 hours

Problem 1:

Dynamically typed languages often tend to be too flexible with return types. Most of my time in

grad school, I have worked in Python, and I have dealt with this problem on at least a weekly basis.

Usually what happens for me is I am using some library, and I am unsure about what type of object will

be returned by a function. Often there is no way to see what will be returned other than by running the

function, which may take inputs and be hard or time-consuming to call in an isolated manner. What I

often do is try my best to determine the type of a returned object by looking at source code or

documentation (if available), making a guess, and putting in a debugging statement or intentional error

right before the value is used. Then, when I run the code, I can check the value by hand and make any

necessary modifications. This can certainly cause issues though, as if the code is sufficiently hard to

reach, it may take extra effort to try and run the specific lines. Furthermore, by only checking at runtime, I

can never be totally sure that there isn’t some other valid object type that the method could return.

Writing valid code that works on all possible output types can cause increased code complexity and make

maintenance much harder.

This problem is inherent to all dynamically typed languages as far as I understand. By allowing

the programmers to be flexible while writing the initial code, it can cause static analysis of code to lose

the ability to catch errors based on expected types. There are some frameworks in which you can annotate

functions with a return type (like Google Closure for Javascript), and a compiler will check that annotated

types match. However, since this is an addition to an existing language, if someone is using a completely

valid but unannotated library written in Javascript, they will suffer from many of the same issues.

An obvious solution to this problem is to only use statically typed languages, but since

dynamically-typed languages already exist, that won’t always be an option. Annotation tools are another

good solution, but require more work than strictly necessary to create valid code, so it may take some

convincing that it will actually save time for the developer and for others who want to use the code later.

The least invasive solution would be to comment every method with a return type, but in my opinion that

is a worse solution since it requires equally as much work but provides fewer solutions since no type

checker or compiler will ever use the commented type.

Problem 2:

There are clearly advantages to in-place operations – sometimes deep copies of objects are not

needed and will waste both time and space being created. However if a programmer expects an operation

mernst
Highlight
This is an intermediate problem (an important real one). However, what is the real problem? That is, why do you want to know the return type? Focusing on the real problem may help you to find more specific solutions or may yield more insight than the general problem.

mernst
Highlight
What is the scenario in which this is difficult? If you are debugging or implementing a feature, I presume you have a test case or an input. Please clarify the use case.

mernst
Highlight
Use a descriptive name. It helps readers, and they can help you to focus on the problem too.

mernst
Highlight
I'm not sure this is even possible. What could the code do with the object, other than print it or call other built-in functions?

mernst
Highlight
You have pointed out negatives about dynamic typing. But surely there must be positives, or known would use it. (You chose Python, either of your own volition or because many other people have chosen Python and you had to go long.) What are the benefits?

mernst
Highlight
When it? Some static typing bigots say that we should rewrite all programs in their favorite programming language. Why aren't they right? What is good but dynamic typing that we would have to give up when transitioning to a statically typed language?

mernst
Highlight
What does this mean, and how is it different than simply using a statically typed language?

mernst
Highlight
How much work would be strictly necessary? Some people say that dynamic typing makes it easier to create a runnable program but static typing makes it easier to create a correct program. (And a correct program is the goal of programming!) Do you agree with that? Why or why not?

mernst
Highlight
Is this your proposed project, to do that convincing? Would it even be correct?

mernst
Highlight
There do exist type checker's and compilers that use commented types. JML is one example. The checker framework is another. LCLint is another. There are others.

You might also want to look up hybrid or gradual typing

mernst
Highlight
Do you mean side effects?

mernst
Highlight
What's the problem?

to be deep, but the result is actually shallow, there is often no good way to catch these errors. Even worse,

this will often lead to bugs which are very hard to find since a seemingly unrelated variable modification

will cause changes to another preexisting variable. I have found this to be specifically difficult when

using Numpy, a python library for fast matrix-like operations. For instance

var1 = np.ones(10) # create a length 10 array filled with [1,1,1…]

var2 = var1[:2] # create a variable referring to elements 0,1,2 (shallow)

var 2 *= 2 # multiply all elements by 2 (shallow)

var3 = var2 + 1 # add 1 to all elements (deep)

var1 = np.ones(10)

var2 = 2 * var1[:2] # (deep)

var3 = var2 + 1 # (deep)

In both cases, Var3 will be [3, 3], however in the first case, Var1 and Var2 share memory, so Var1 will

also be modified by line 3.

 This can be especially hard to catch because in both cases Var3 holds the expected value, and

var1 may never be accessed again. But if var1 is accessed again, the results may be unexpected if method

1 is used. The problem can essentially only be solved in two ways. The first is to never use in-place or

shallow operations, but as stated this has numerous performance implications. The second is to very

clearly comment methods that are in-place, and potentially include conventions such as labeling all in-

place methods with a suffix such as having two methods “add(x, y)” and “add_in_place(x, y).” This

would only be a convention, which programmers could freely ignore, so the problem would still exist in

many codebases.

Problem 3:

 Writing unit tests are useful for two primary reasons. They help verify that the code behaves in an

expected manner, and they automatically check that changes to the code don’t break previously expected

behavior. One issue with unit tests is that they are limited to what the programmer thinks are sufficient

tests. There could still easily be issues that these tests don’t catch, and similarly there could be

functionality that isn’t explicitly tested but could be broken by some other change. I have run into this

when working at Google. I created a progress slider that moved when the mouse dragged it. I wrote tests

that took an x and y location for the mouse and checked that the slider was correctly positioned. Later,

someone modified how the mouse’s x and y location were stored which broke my slider, but my tests still

passed because I was testing on raw integer inputs rather than reading from a mouse location.

 This type of bug seems to be common in large projects with many programmers adding and

modifying code that affects others. It can also be caused by only writing unit tests using a few expected

inputs. To try and prevent this in the future, we can try to write tests that cover as broad a range of inputs

as we can think of. It is important to also think about what existing code may break because of a certain

change, and to double check that things are still working even if all tests pass. Additionally, it may be

useful to generate lots of random input tests to make sure coverage of possible inputs is large enough to

catch most existing bugs.

mernst
Highlight
These are not standard uses of the terms deep and shallow. Or maybe it is in numpy. But you need to define it here.

mernst
Highlight
 Maybe you are talking about aliasing.

mernst
Highlight
Anything that a programmer can do by examining the source code can be done by an analysis. So, when it right and analysis that reads the comments and issues a warning if any of the comments is in conflict with the code? You might also want to indicate when a particular variable is unaliased.

mernst
Highlight
I think this is a real problem, but I think it is different than the problem that you set out above. The problem above was about integration but now you're talking about test adequacy. I view these as orthogonal and think you should focus on one or the other. You seem to be more focused on comprehensiveness.

mernst
Highlight
This is good: it is a very concrete scenario.

mernst
Highlight
This paragraph gives good general advice about test comprehensiveness, but it's mostly motherhood and apple pie. It's not very specific or actionable. Can you narrow your focus and think more deeply about that one particular part?

mernst
Highlight
The problem with random input is that the input may be illegal or the correct output may be unknown. For example, suppose you pass a negative number to the square root function. When it crashes, does that indicate a bug in square root? How could you deal with this problem?

