
CSE 503 Homework 1

Beibin Li (ID: 1723402)

Jan/7/2018

I had visa issue and absent the first two classes; so, I spent some extra time on doing this homework (4 hours on reading
lecture notes, 5 hours on doing the homework).

Reuse Code

Reusing code is beneficial: (1) when you make a change to a function, you just need to make the change in one place
rather than many places. (2) Reusing code can also avoid writing bugs while reimplementing the same functionality. (3)
Reusing code can improve the readability and reduce complexity of code.

However, reuse other’s code is hard unless the code is well documented. Unfortunately, most code in CS research are
not well-documented or well-commented because of time limitation: researchers have to spent time on writing grants,
writing papers, presenting projects, and attending conferences. Even if a program might be well-described in published
papers, its code can be hard to understand due to lack of comments and undocumented assumptions. It’s also hard to
locate a function/module in a large project (e.g. more than 100k lines of code) if you are not familiar enough to the
project. Sometimes, you do not even know a functionality is already implemented by others in the past.

Sometimes programmers can hardly reuse their own code. Often, programmers have to try different function calls for a
single line of code (particularly true for scripting languages), and they usually choose to just comment redundant code
out (or even leave it as is) rather than deleting it for reproducibility (e.g. to reproduce testing accuracy, plots, etc).
However, if programmer doesn’t delete duplicate or “dirty” code, the script would become long, unreadable, and not
efficient to run.

If code is well-documented, reusability would be largely increased. One solution to the problem is to create “markdown”
or “html” version of the code (e.g. R Markdown, iPython Notebook) so that comments can be easily made and viewed.
However, installing and using these tools might be time consuming for programmers (even if it just take few minutes),
and those systems usually require programmers to run code in browser. Another possible solution is to create better
“comment system” in IDEs (including Vim and Emacs), which can display comments nicely and show LaTeX formulas.
So, programmers do not need to install new software nor use browser to view/edit codes.

From my personal experience, creating UML graph or logic graph would increase readability of code significantly. By
reading a UML graph, new teammates (labmates, grad students) can understand large projects easily, and they can find
bugs and reusable codes much quicker. However, creating and maintaining these graphs are not easy, and PIs usually do
not create such documentation because it’s not helpful to get funding. A better UML ploting software (as a plug-in in
Comment System or Markdown language) can be useful.

Break large component of code to smaller pieces might be a solution to reuse code, because large component of code
often have assumptions and hence hard to be reused. However, breaking large component is time consuming. A possible
alternative solution is to create tools to break a large function into smaller ones. Sometimes, programmer can hardly
break a large component because there are too many assumptions made in the code, and I often encountered this
problem while adding features or performing maintenance.

Test Suites

I have created and used test cases while creating software and video games, but I rarely created test cases in research
(for data analysis). However, creating test cases can ensure soundness and robustness for research.

I encountered the following problems while creating test cases for my data analysis codes: (1) Create test cases by hand
is almost impossible in many domains. e.g. create brain fMRI signal data, which contains millions lines of data for one

1

mernst
Highlight
There are many ways to reuse code. Please clarify. Here, you seem to talking about making multiple calls to a function.

mernst
Highlight
Minor: I had to read this sentence three times to parse it correctly. You mean that reusing code prevents the need to reimplement functionality.

mernst
Highlight
I'm not sure this is true. I see that it would reduce the size of the code, but adding abstractions generally increases complexity.

The same goes for readability. If the obstructions are well chosen, they should improve readability.

mernst
Highlight
Typically you're looking for functionality. You know the function or module, it is easy to find.

mernst
Highlight
I don't see what this adds. Also, the first sentence of the paragraph should be a topic sentence: the whole paragraph should be about that. Here, you've introduced a new paragraph with a throwaway sentence that is not related to the rest of the paragraph.

mernst
Highlight
Why is commenting any safer than deleting? I don't see how this choice affects reproducibility.

mernst
Highlight
If the code isn't being run, why does that affect efficiency?

mernst
Highlight
This doesn't seem like a serious problem, and it's not conceptual either.

mernst
Highlight
I would think that learning the tool is the more serious issue.

mernst
Highlight
This doesn't solve the problem. The problem is programmers not writing documentation. Converting the documentation from ASCII to HTML is unrelated to the root problem.

mernst
Highlight
Is this a significant part of the problem?

mernst
Highlight
These graphs are separate from the code. I don't think it affects readability of the code. It might make the system as a whole easier to understand.

mernst
Highlight
This might be helpful, but you've not described how it is helpful. Your document is touching on a number of possibly interesting issues, Billy better to narrow your focus to fewer of them and explain each one more thoroughly. High-level, vague descriptions do not inspire brainstorming to solve concrete problems.

mernst
Highlight
Another disadvantage is that if there are very many components, it may be hard for people to know about all of them and reuse them.

mernst
Highlight
Be specific about what the problem was and how you solved it. That can inspire solutions.

mernst
Highlight
Why? Was this the right thing to do?

There multiple possible goals. One is to get a paper published and have impact that way. Another is to create a system that many other people use, and have impact that way. Neither one is correct or incorrect; each one can produce impact.

In other words, it is not obvious to me that this is a problem. Can you motivate that it is?

More generally, a software engineer should trade off the costs and benefits of the actions that he or she takes. The goal is to have impact. The goal is not to satisfy some arbitrary coding guidelines.

How would you decide whether it is a good idea to create test cases for particular research project?



experiment session. (2) There are many atypical cases (e.g. missing data, strange noise, etc) in the real world which you
might not think about. Creating test cases to emulate these real world situations is hard and needs lots of thoughts. (3)
Create test cases by generating random numbers (even with some smart restrictions) is not applicable because generated
data might not follow real world logic. e.g. brain fMRi signals, heart rate, etc. (4) Even if we randomly generated
test cases, we do not know what the correct output should be for that test case. (5) Actually, researchers are writing
programs (and functionalities) that never existed before, and nobody knows what the correct output would be.

One possible solution is to learn patterns form existing data, and then synthesis fake data by infusing the learnt patterns.
However, this solution doesn’t solve the problem very well: how do you know your data generating program is bug-free?
Which test cases do you use to test your test-case-generating program?

Another possible solution is to label your test cases (even if it needs lots of human labor), but this solution doesn’t
solve the whole problem either. Getting large amount of test cases becomes popular in computer vision and machine
learning recently. Instead of lacking testing suites, lots of testing datasets (e.g. MNIST, ImageNet) are public available
online. Different from traditional software development, machine learning use these testing suites not only as “testing for
algorithm” but also as data for training. Nowadays, computer vision and machine learning researchers rely too much on
these testing suites, and many research groups are just competing the “testing performance” on those data sets. However,
these public testing suites are not sound. For instance, some papers claimed that they can detect vehicles from ImageNet
with more than 90% accuracies (also sensitivity and specificity), but their models cannot achieve such performance in
real world which contains lots of noises from weather, sunshine/light, shadow/dark, traffic, region/country differences,
etc. Hence, even if the program can achieve good result from the testing suites, it does not necessary guarantee the
soundness of the algorithm because it cannot be generalized to predict future data.
An obvious possible solution is to “get more data and more variable data”, but this solution is not scalable because the
real world is so complex. I cannot come up with better solutions for the software development and the machine learning
testing problems at this point. However, solving the testing problems becomes crucial in CS research.

Maintenance

Making changes, adding features, resolving bugs for existing code are common tasks in maintenance. Maintenance is
unavoidable for both researchers and programmers. At the same time, maintenance is time consuming, dirty, and not
intellectually rewarding.

The maintenance problem is also related to “reuse code problem”, because good documentation and enough comments
can help both “reuse code” and “maintenance”. I heard a joke about maintenance, “If you do not comment your code,
then nobody can maintain it for you, and you are trapped to maintain your own code for your lifetime until the project
is abandoned or comments are made”. It’s true for some software that the maintenance even takes more time than
development.

Maintenance often break previously made assumptions. For instance, I wrote a “Fruit Ninja”-alike mobile game in the
past, and now I want to reuse the class Target and class Background, etc in my “AngryBird”-alike video game. However,
these class have assumptions that doesn’t fit the new game: targets are not round shaped (physical engine change) fruits
any more, and the background is not a static image (media codec change) now. If I choose to change existing classes to
fit both games, I have to change the class (module) significantly: the logic will become more complex, the code will be
longer, it sometimes will break my design pattern, and the UML graph should also be updated. During maintenance, I
often found that I hadn’t considered lots of things (e.g. multi-language support in game) in the original development.
Discussing and thinking deeper about design pattern might help future maintenance, but it cannot avoid maintenance.

Moreover, debugging could cause (generate) more bugs, because debugging process often breaks local logics. Similarly,
updating libraries and tools will enforce you to modify your code because of compatibility, which might cause new
problems and bugs. Maintain code in local level will also destroy the style of code (e.g. I have to add embedded for loop
inside other two for loops). The easiest way to avoid generating new bugs is to use test case, but this method caused
testing problem as we discussed above. Read the version change notes before updating libraries is useful to handle
library updates, but updating will still causes some unnoticed bugs. Rewrite the whole function might solve the problem
of style, but it is time consuming and bug-prone.

In conclusion, in order to maintain code more efficiently and effectively, programmers should think deeper about
design before writing, write well-commented code, and read library documentations carefully. New tools should also be
developed to help programmers to complete those tasks.

2

mernst
Highlight
True, but the oracle does not have to be an exact answer. It is still possible to create a predicate that you know the program must satisfy. Same comment applies to point 4.

mernst
Highlight
I'm not sure what this means.

mernst
Highlight
Label how?

mernst
Highlight
This seems to be a problem with the data set. One obvious (and trivial) solution is to use better data sets.

But, is there any way to predict whether a given dataset or test suite is adequate?

(I now see that you come to a similar conclusion later in the section.)

mernst
Highlight
I like this section, and your document as a whole, because it is raising a lot of interesting, juicy, important questions.
However, a weakness is that you mentioned these many questions but don't investigate any of them in detail. Therefore, you've deprive yourself of the opportunity to brainstorm deeply about them. You'll need to focus in on a smaller number in order to devise interesting questions and solutions.

mernst
Highlight
Choose one of these and focus on it.

mernst
Highlight
This is true for all successful software.

mernst
Highlight
There is truth behind this joke: that is white is funny. So, can you figure out what the underlying problem is, and can you think about how to solve it?

Maybe the underlying problem is that programmers don't write comments. Then, you could think of ways to remind them or help them. Or, May the problem is that undocumented code is hard to maintain. You could think of ways to automatically create comments for undocumented code, or ways to perform common maintenance tasks even when documentation is lacking.

These are examples of ways to take an idea and make it more concrete. You would want to go into much more depth than a half here, but this is a way to start.

Currently, although there is a germ of an idea in this paragraph, the paragraph really doesn't add much to the document.

mernst
Highlight
This note can example. But an even better example would be something that you really did in the past. You don't have to make up problems. The world in your life is already full enough of them!

mernst
Highlight
Again, give a concrete example. If you have a concrete example, you can come up with a solution for that. It might not solve all problems, but at least would solve one, and it might lead you to useful generalizations in the future.

mernst
Highlight
Programmers are not likely to change the behavior just because you urge them to. How can you provide tools to help them?


	Reuse Code
	Test Suites
	Maintenance



