
Yisu Wang remywang 1723358

Issue 1​: unit tests are helpful to ensure correctness of program and identify problems at an
early stage. However, it is difficult to write unit tests for certain programs. One example is a
program with side effects, e.g. printing a picture to the screen. It is much easier to manually run
the program, look at the picture to see whether it is correct, than to write an oracle that
describes what a correct picture looks like.

My solution​: I would use a purely functional language and organize my program to separate
pure functions from side-effecting functions as much as possible. The former can be easily
tested in units, and there will be fewer effects to test. However, this does not solve the problem,
if the specific software requires a lot of side effects.

Current approaches​: There exists research on algebraic effects that aim to formally verify
side-effecting programs. But the mathematics involved is too difficult for a regular programmer,
as is the case of most current theorem provers.

There are also tools that automatically generate test oracles from examples. But they only
generate oracles for whole-program testing instead of unit tests. The reason is, it is more difficult
to demonstrate how a component of a system works than to demonstrate how the system as a
whole works. For example, one can demonstrate a GUI by simply using it, but one cannot
“simply use” part of the GUI code.

Proposed solution​: building on current tools that generate whole program test oracles, we can
build a tool that generate oracles and driver programs for unit tests as follows: 1. Run the
generated whole program oracles and collect data that flow through each function. 2. For each
function, automatically generate driver programs / test suites that call the function on the
collected inputs. Furthermore, one can generalize the unit tests by iteratively running the test
generation tool on the driver programs generated.

Issue 2​: to understand a large system, the developer needs to know: 1. In the physical world,
what the system is supposed to do, say rendering an image / align DNA sequences (domain
knowledge) 2. From the digital world, how a command correspond to a physical action
(knowledge about atomic code) 3. How a group of commands compose to perform a group of
actions (knowledge about how atomic code compose). Usually, the developer can understand
atomic pieces of code from the documentation. S/he can also run the whole system with
different test inputs to understand the system’s behavior as a monolithic piece. But it is difficult
to understand a group of code that make up only parts of the system, because it is not
documented and cannot be directly executed separately.

My solution​: I would search for similar coding patterns in the code base, perhaps with grep and
a regex that describes the pattern. Or perhaps I might even search for the pattern on the

mernst
Highlight
Side effects are an important issue. They can be difficult to test for, and they can corrupt the state of the machine making subsequent tests fail. Testing of display, however, is generally considered a separate issue than either of these. I think you are just talking about testing graphical output.

mernst
Highlight
It depends on how many times you want to run the test.

mernst
Highlight
This is orthogonal to the notion display.
The use of a purely functional language also seems orthogonal to your issue. I don't see how that helps with display. It does prevent side effects, which makes it easier to test and reason about, but also make some programming idioms harder.

mernst
Highlight
I would think the opposite is true: if there is a standalone module, its behavior is likely to be simpler than the behavior the system as a whole.

Furthermore, your proposed solution says to just treat each module as a whole program, and if the problem is fundamentally harder than your proposed solution would not work.

mernst
Highlight
Please support your argument with specifics. Exactly which tools are you thinking of?

mernst
Highlight
What is a command? What is a physical action? What is atomic code? I'm having some trouble understanding your terminology.

mernst
Highlight
I suspect this sentence is the crux of the argument, but I cannot follow it.

Also, the claim that "it is not documented" may often be true, but is it necessarily true as stated here? The same comment applies to "cannot be directly executed separately".

mernst
Highlight
Similar to what? To one another?

mernst
Highlight
What is the actual problem? No developer has ever had as his or her goal to understand the system. The goal might be to modify it, or to fix a bug, etc. You should state and address a real problem.

internet, with the function names involved. I would also try to write a minimal program that uses
that coding pattern and run it with different inputs.

Current approaches​: in a debugger, the developer can direct the program execution to the
desired part of code with special inputs via trial and error. But this can be less feasible and
frustrating if the codebase is large. If the group of code spread across different functions or even
different files, this becomes even more challenging.

Proposed solution​: build an interface, perhaps a text editor / IDE plugin: the developer selects
a fragment of code, upon which the interface brings up many other code with similar patterns
from within the same repo or even from the internet. To implement the interface, we can
generate regex (or some regex-like query language) from the code selection and pass the query
to grep.

Issue 3​: software that has existed for a long time can be difficult to use and maintain. First,
heavy optimizations obscure implementation. Second, layers of features complicate the
interface. C++ and linux are examples.

My solution​: for heavily optimized code, I would try to write out a pseudocode that describes
the program behavior in a simple yet structured way. For code with many features, I would go
back its commit history to find the earliest implementation, and see how the features got added
gradually.

Current approaches​: there has long been deobfuscation tools. But they usually generate code
in the same language as the obfuscated code, which can be less helpful if the language is
foreign to the developer. E.g., a heavily optimized code could be in assembly code. There is
also tools that assist in understanding multi-layered applications, but they are aimed at code
with multiple layers each for a particular task (for example user interface, databases, business
process).

Proposed solution​: for the deobfuscation part, either develop or pick a language that can
encode high-level implementation straightforwardly. Then try to compile the obfuscated code
into that language. This can be a direct application of verified lifting, which uses program
synthesis to search for a program in language A that implements another program in language
B.

For the second part, I imagine a system that uses some program differencing algorithm to
compare the source code between commits. Then the system maps the original, simpler
program to part of the current code. Similarly, each layer of feature is mapped to a fragment of
the current source. In the end, the developer can view each feature in separation, and opt to
disable / enable certain features during trial runs of the program.

mernst
Highlight
The problem was understanding alert system. You now seem to be talking about some specific pattern.

mernst
Highlight
I'm confused about how this is related to the previous two paragraphs.

mernst
Highlight
How does this solve any of the three things you've talked about so far (understanding a large system, understanding coding pattern, running a debugger)?

mernst
Highlight
How is this an example of heavy optimizations obscuring implementation? I interpret this as the language; be talking about some program written in this language?

mernst
Highlight
As with your previous issue, you've not actually stated a real problem. As a result, the reader doesn't understand what you have in mind, and your discussion also skips from topic to topic. If you started out with a real, focus problem, then I think your discussion of it could be understandable.

mernst
Highlight
This solution is so generic that it doesn't convey the essence of what you would really be doing (that is, it's the mechanics of how you would navigate the code but it isn't what you would actually be doing) and it doesn't give any guidance to a programmer who would want to do the work.

mernst
Highlight
This has nothing to do with either of the problems that you brought up.

mernst
Highlight
Don't just make an assertion like this. Supported with specifics.

mernst
Highlight
This is content free.

