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HW1: I Have So Many Problems 
 
Problem 1: A missing framework for machine learning experiments 
 

I write systems that attempt to extract information from natural language text. Like many 
programmers today, I am using machine learning techniques and spend a lot of time running 
experiments in which I am tweaking various settings, from hyperparameters to featurization 
code to the actual data that I am running on. A major problem I have is accurately keeping track 
of the experimental setup and corresponding results of each experiment.  

For example, let’s say that last week I ran some experiments testing various 
regularization settings, and I’m now looking back at those results. I probably assigned an 
informative name to the folders and files containing the results, but there will be things I’m not 
sure of: Did I run these before I fixed that bug in the data preprocessing? Was this before or 
after I switched the featurization code to make all the text lowercase? Was I using the new, 
updated version of the dataset yet? There are other, more nefarious things that can cause 
problems as well: Do I have bug that is causing datapoints from my test set to pollute my 
training data? 

These are problems that lie somewhere at the nexus of version control, testing, and data 
presentation/visualization. I can imagine a framework or language for running experiments that 
would both assist a programmer in dealing with these issues and also provide a more 
standardized way of recording and presenting experiments that could help with the 
reproducibility of published results. 

For example, I can imagine a type system that has separate types for 
TrainingDataPoints and TestDataPoints that would throw an error if you tried to mix them, or 
even would check to confirm that no identical datapoints existed with both types. This 
framework could have a special type of abstract function called a Featurizer that takes as input 
a DataPoint and outputs a single Feature for that example. Individual Features can be 
composed into FeatureVectors, and Featurizers could be composed to create high-level 
features from lower-level features. A Featurized dataset could then be “compiled” into a 
training/test set. Some sort of version control would be tracking the Featurizers and DataPoints 
used to easily diff between different experiments, with similar attributes for model parameters. 

Current version control systems don’t quite seem suited--it doesn’t make sense to 
commit to Git every time you change a hyperparameter. A bit of search has turned up a few 
attempts at frameworks to solve this, of which ​this one​ looks the most relevant. However, while 
this help track changes in parameters, I don’t think it tracks changes in actual code. I think that 
some sort of DSL that helps us think about running experiments based on data the way SQL 
helps us with storing/accessing data would have a lot of applications today. 
 

http://sacred.readthedocs.io/en/latest/


Problem 2: Understanding whether bad results are due to bug or technique 
 

The scenario of writing research software also complicates the testing process. I imagine 
that most software developers have a very clear idea of the intended behavior of their code, so 
in general, in addition to writing unit tests to test various individual components, they also have 
the high-level test of the ultimate behavior of the entire program: Setting aside corner cases, if I 
run it, does it generally seem to be doing what I intended?. When writing research code, the 
researcher doesn’t necessarily know how the program “should” be behaving. If I am testing a 
new machine learning model and it is producing terrible output, is that because the code is all 
correctly written but my model is just ineffective, or is it because I have a bug somewhere that is 
preventing the model from doing what it is capable of doing? 

The basic idea of a “sanity check” is much harder in this setting. Good unit testing is still 
a viable option in this regime (though I suspect that it is rarely used by most researchers). I also 
think this paradigm supports slightly different testing practices than typical software 
development. I suspect that researchers are generally less concerned about ensuring that the 
program will never crash in unlikely edge cases than in generally having functional code. 

Perhaps this is as simple as mocking out the “experimental” part of the code, such as 
machine learning model. But this portion of the code often consists of multiple moving parts, any 
one of which might have its own bugs. Perhaps there is simply some way to intelligently design 
a few test cases that can provide known results. 
 
Problem 3:  
 

One issue I have is related to maintenance, in particular, the potential change over time 
of the kind of data being input into the program. For example, my code often relies on external 
libraries for dealing with certain aspects of data. In working with natural language text, I use a 
package called Stanford CoreNLP to perform low-level NLP tasks on raw text. I also make use 
of a tool called WordNet which does things like provide synonyms for a word. Sometimes 
revisions to these tools have major ramifications on my downstream code; they don’t 
necessarily break things in a way that throws exceptions, but they alter the data in such a way 
that it produces a different featurization that causes my machine learning models to produce 
poor results.  

In addition, when running machine learning models in the real world, sometimes data 
comes in that looks very different than what my models were trained one; perhaps I trained on 
“clean” data but am now running on text scraped from the web that has stray bits of HTML in it. 

It would be nice to have some kind of “data sanity check” that can detect that the inputs 
to the program have changed over time. I’m thinking that it would almost be like a fuzzier 
version of a type system. The program would learn a “type” for the input based on various 
features, and would throw some kind of exception if a data point didn’t fit that type. As a very 
simple example, rather than simply restricting an input to be of Float type, it could learn that 
input is generally a positive float that is less than one million, and if a value outside that range 
appeared one day, it would alert the programmer/user that something unusual had happened. 






