
Thin Slicing

Manu Sridharan
University of California, Berkeley

manu_s@cs.berkeley.edu

Stephen J. Fink
IBM T.J. Watson Research Center

sjfink@us.ibm.com

Rastislav Bodík
University of California, Berkeley

bodik@cs.berkeley.edu

Abstract
Program slicing systematically identifies parts of a program rele-
vant to a seed statement. Unfortunately, slices of modern programs
often grow too large for human consumption. We argue that un-
wieldy slices arise primarily from an overly broad definition of rel-
evance, rather than from analysis imprecision. While a traditional
slice includes all statements that may affect a point of interest, not
all such statements appear equally relevant to a human.

As an improved method of finding relevant statements, we pro-
pose thin slicing. A thin slice consists only of producer statements
for the seed, i.e., those statements that help compute and copy a
value to the seed. Statements that explain why producers affect the
seed are excluded. For example, for a seed that reads a value from a
container object, a thin slice includes statements that store the value
into the container, but excludes statements that manipulate pointers
to the container itself. Thin slices can also be hierarchically ex-
panded to include statements explaining how producers affect the
seed, yielding a traditional slice in the limit.

We evaluated thin slicing for a set of debugging and program
understanding tasks. The evaluation showed that thin slices usually
included the desired statements for the tasks (e.g., the buggy state-
ment for a debugging task). Furthermore, in simulated use of a slic-
ing tool, thin slices revealed desired statements after inspecting 3.3
times fewer statements than traditional slicing for our debugging
tasks and 9.4 times fewer statements for our program understand-
ing tasks. Finally, our thin slicing algorithm scales well to relatively
large Java benchmarks, suggesting that thin slicing represents an at-
tractive option for practical tools.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Debugging aids

General Terms Languages, Reliability

Keywords slicing, debugging, program understanding

1. Introduction
“Thin-slicing is part of what makes the unconscious so
dazzling. But it’s also what we find most problematic about
rapid cognition. How is it possible to gather the necessary
information for a sophisticated judgment in such a short
time?” Malcolm Gladwell, Blink: The Power of Thinking
Without Thinking

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’07 June 11–13, 2007, San Diego, California, USA.
Copyright © 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00.

Motivation Large-scale object-oriented programs can be very hard
to understand and debug. Pervasive use of heap-allocated data and
complex data structures in these programs causes much of this
difficulty. Multiple levels of pointer indirection in common data
structures can make manually tracing the flow of data through
the heap prohibitively difficult. For these situations, programmers
could benefit from a tool that abstracts away irrelevant details of
heap behavior during code inspection and debugging.

Program slicing is a well-known technique for identifying a sub-
set of the program that is relevant to a statement or value of in-
terest, called a seed1. Slicing applies to a variety of program un-
derstanding tasks, ranging from testing and debugging to reverse
engineering [27]. Weiser [28] originally defined a slice as an exe-
cutable program subset in which the seed statement performs the
same computation as in the original program. Weiser’s definition is
elegant and intuitive, but imposes a rather broad definition of rel-
evance: any statement t that could possibly affect the computation
at the seed statement s must appear in the slice. This definition pol-
lutes slices with many statements that indirectly affect a seed but
are not pertinent to typical program understanding tasks.

Data structures are a key source of slice pollution. Slices of-
ten include internal implementation details of these data structures,
which are almost always irrelevant to programmer tasks. Consider
a value stored in a deeply nested data structure, e.g., a hash table
which holds trees with lists at each tree node. A backwards slice for
a read from one such list must include the statements that construct
and manipulate all levels of this complex data structure. For many
program understanding tasks, the programmer needs information
about the values stored in the list, but doesn’t care about other de-
tails of nested data structures containing the value. Furthermore,
modern programs typically rely heavily on well-tested data struc-
tures provided by standard libraries, whose internal details rarely
concern the end-user programmer. For these common cases, the
backwards slice presents far too much information for the task at
hand.
Our Approach This paper presents thin slicing, a program under-
standing technique that redefines relevance in a manner aimed at
only including statements useful for developer tasks. For thin slic-
ing, only producer statements for the seed are relevant, i.e., those
statements that help compute and copy a value to the seed. State-
ments that explain why producers affect the seed are excluded from
a thin slice. In practice, producer statements alone are sufficient for
many debugging and program understanding tasks.

We demonstrate the relevance notion of thin slicing on the Java
program fragment of Figure 1, which manipulates Strings stored
in a container. Given full names as input, the example extracts the
first names and stores them in a Vector (the readNames() func-
tion), and then later prints out the first names (the printNames()

1 The seed is often termed the slicing criterion in the literature [27]; we use
‘seed’ for brevity.

112

1 class Vector {
2 Object[] elems; int count;
3 Vector() { elems = new Object[10]; }
4 void add(Object p) {
5 this.elems[count++] = p;
6 }
7 Object get(int ind) {
8 return this.elems[ind];
9 } ...

10 }
11 Vector readNames(InputStream input) {
12 Vector firstNames = new Vector();
13 while (!eof(input)) {
14 String fullName = readFullName(input);
15 int spaceInd = fullName.indexOf(’ ’);
16 String firstName =

fullName.substring(0,spaceInd-1);

17 names.add(firstName);
18 }
19 return firstNames;
20 }
21 void printNames(Vector firstNames) {
22 for (int i = 0; i < firstNames.size(); i++) {
23 String firstName = (String)firstNames.get(i);

24 print(“FIRST NAME: “ + firstName);
25 }
26 }
27 void main(String[] args) {
28 Vector firstNames =

readNames(new InputStream(args[0]));
29 SessionState s = getState();
30 s.setNames(firstNames);
31 ...;
32 SessionState t = getState();
33 printNames(t.getNames());
34 }

Figure 1. Example showing the advantages of thin slicing. The six
statements with underlined expressions are in the thin slice seeded
with line 24, while the traditional slice for line 24 contains all
displayed code. The bodies of functions with inessential behavior
(e.g., print()) have been elided for clarity.

function). The main() method illustrates a use of the code in a web
application, storing and retrieving the names from a SessionState
object. The example contains a bug: when the program receives
as input full name “John Doe”, line 24 erroneously prints “FIRST
NAME: Joh”.

Traditional slicing does not help in diagnosing this bug, as a
slice seeded with line 24 includes all the code in the example.
The slice must include all the code to construct and populate the
Vector passed to printNames() and the code in main() retrieving
the Vector from the SessionState object, which all affects line 24.
As in this example, slices for Java programs typically include most
of the program.

What lines of code are most relevant for the debugging task
in this example? The bug lies at line 16, which incorrectly passes
spaceInd-1 (rather than spaceInd) to String.substring(). See-
ing how this erroneous String flows to where it is printed would al-
most immediately lead the user to the problematic line. In this case,
the flow traverses a Vector: line 17 adds the String, and line 23 re-
trieves it.

A thin slice only includes producer statements for the seed. We
say statement s is a producer for statement t if s is part of a chain of
assignments that computes and copies a value to t. In Figure 1, the
producer statements for the seed, highlighted with underlining, are
almost exactly the statements most relevant to the bug in question.
We are interested in the pointer value in firstName at line 24, and
the thin slice allows us to easily trace its flow (relevant expressions
are underlined):

• Line 23 copies the value returned by Vector.get().
• Vector.get() obtains the value from an array read (line 8).
• The value is copied into the array in Vector.add() (line 5).
• Vector.add() gets the value from the actual parameter at

line 17.
• Line 17 passes the value returned at line 16, the buggy state-

ment.

Unlike a traditional slice, the thin slice does not provide an exe-
cutable program; for example, statements initializing the Vector
containing the erroneous String are not included. However, the
thin slice more directly leads the user to the bug.
Advantages of Thin Slicing One reason that thin slicing works
well is that it ignores value flow into base pointers of heap accesses,
focusing just on the value read from or written to the heap. For ex-
ample, line 8 reads this.elems[ind]. A thin slicer ignores the val-
ues of the two dereferenced base pointers (this and this.elems),
focusing solely on statements that can write into the array (i.e.,
line 5). In contrast, a traditional slicer includes statements influenc-
ing both the base pointers this and this.elems (dereferenced to
access the array contents), contributing to the blowup in slice size.
For many program understanding tasks, base pointer manipulation
matters less than actual copying of the value through the heap.

Thin slices have an intuitive semantic definition, making them
easier to understand than some ad-hoc pruning of the traditional
slice. Simply stated, a thin slice contains all statements flowing
values to the seed, ignoring uses of base pointers. These well-
defined semantics allow a user to reason about thin slices in a self-
contained manner, since she knows that all producer statements
are included in a thin slice. If slices were shrunk using some ad-
hoc method, such as setting a constant limit on slice size, the user
could not easily characterize what is in the presented slice subset
and what is missing.

In cases where a thin slice alone is insufficient for some pro-
grammer task, it can be expanded with additional thin slices to ease
the understanding of other relevant statements. One case in which
statements outside the thin slice may be needed is to explain heap-
based value flow, established through pointer aliasing. For exam-
ple, given a field read x := y.f and a field write w.f := z in a thin
slice, a user may ask how aliasing between y and w arises, causing
heap-based flow from z to x. This question can be answered via two
more thin slices, respectively showing how some object o flows to
both y and w. This expansion of the thin slice can be repeated recur-
sively for further aliasing questions, yielding a structured method
for studying the often large set of statements relevant to nested data
structures.

A similar expansion technique applies to explaining why thin
slice statements can execute, i.e., showing their transitive control
dependences. Traditional slicers must include all transitive control
dependences. Unfortunately, Java’s semantics make many state-
ments a type of conditional branch, often yielding a huge number
of control dependences. For example, if a statement might throw
an exception, many statements will be control dependent on its suc-
cessful execution. Similarly, each virtual call x.m() is a conditional
expression because it branches on the runtime type of x.

113

In practice, we found that when control dependences are rele-
vant, they can usually be identified from browsing the source code
since they appear lexically near a thin slice statement, making their
discovery straightforward. Further thin slices can be taken to un-
derstand these important conditionals. In the limit, hierarchically
expanding a thin slice to show control and aliasing explanations
yields a traditional slice; hence, any possibly relevant statement can
eventually be discovered.

Of course, thin slicing does not provide a panacea: in certain
cases, thin slices with expansion grow too large to effectively iden-
tify statements of interest. However, for most tasks we tested, thin
slices with little or no expansion included the desired statements
for the task with many fewer extraneous statements than traditional
slices.

The current paper focuses on static thin slicing for Java, but the
technique is more broadly applicable. Thin slicing itself relies on
standard data dependence concepts [10] and hence should apply
to many programming languages. Our hierarchical expansion tech-
nique relies on properties of Java pointer accesses, however, and
many not work as well for languages like C (see Section 4). Also
note that dynamic thin slices can be defined in a straightforward
manner using dynamic data dependences.
Contributions This paper makes the following contributions:

• We define a thin slice as producer statements for a given seed.
• We present a method for hierarchically expanding thin slices

to explain why producer statements affect the seed, in the limit
yielding a traditional slice.

• We present simple modifications to existing slicing algorithms
for computing both context-insensitive and context-sensitive
thin slices.

• We present experiments comparing thin slicing and traditional
slicing for several debugging and program understanding tasks,
using a methodology that simulates realistic use of a slicing
tool (details in Section 6). Our results show that (1) thin slices
usually included the desired statements for the tasks (e.g., the
buggy statement for a debugging task), and (2) thin slices re-
vealed desired statements after inspecting 3.3 times fewer state-
ments than traditional slicing for debugging tasks and 9.4 times
fewer statements for program understanding tasks. We also
showed that our thin slicing algorithm scales to relatively large
Java benchmarks.

The rest of this paper is organized as follows. Section 2 defines
producer statements and the thin slicing process, and Section 3 de-
fines thin slices using traditional dependences. Section 4 describes
our technique for expanding thin slices to explain heap-based value
flow and control dependences. Section 5 presents algorithms for
computing thin slices as variants of a traditional slicing algorithm.
Section 6 gives our experimental evaluation, Section 7 discusses
related work, and Section 8 concludes.

2. Defining Thin Slices
In this section, we define the producer statements included in a
thin slice. We also show how statements excluded from the thin
slice explain why the producer statements affect the seed. A simple
example, seen in Figure 2, is used to illustrate these concepts.
Section 3 defines the statements in a thin slice using traditional
notions of dependence.

Slicing determines the parts of a program “relevant” to some
seed statement. In traditional slicing, relevance is defined as any
statement possibly affecting the values computed by the seed. As
originally stated by Weiser [28], this relevance definition requires
the slice to include an executable subset of the program in which
the seed always performs the same computation as in the original

1 x = new A();
2 z = x;
3 y = new B();
4 w = x;
5 w.f = y;

6 if (w == z) {
7 v = z.f; // the seed
8 }

Figure 2. A small program to illustrate thin slicing. Directly-used
locations (see Section 2) in the thin slice for line 7 are underlined.

program. Thin slicing differs from classical slicing primarily in its
more selective notion of relevance.

With thin slicing, only producer statements for the seed are
relevant. We define producer statements in terms of direct uses of
memory locations (variables or object fields in Java). A statement s
directly uses a location l iff s uses l for some computation other
than a pointer dereference. For example, the statement y = x.f
does not directly use x, but it does directly use o.f , where x points
to o. A statement t is a producer for a seed s iff (1) s = t or (2) t
writes a value to a location directly used by some other producer.

Consider computing a thin slice for line 7 in the toy example of
Figure 2. Line 7 directly uses an object field written at line 5 (since
w and z are aliased), and therefore, line 5 is a producer. Similarly,
line 5 directly uses y, which is written at line 3, making line 3 a
producer as well. Hence, lines 5 and 3 are comprise the thin slice
for line 7 (along with line 7 itself). In contrast, the traditional slice
for line 7 is the entire example.

We call the non-producer statements in the traditional slice
explainer statements. These statements show why the producer
statements can affect the seed. Explainer statements can show one
of two things about the producers:

Heap-based value flow When values flow between producers
through heap locations, the locations are accessed using aliased
pointers. Explainer statements show how these base pointers
may become aliased.

Control flow The remaining explainer statements show the condi-
tions (i.e., the expressions in conditional branches) under which
producer statements actually execute.

Consider again the example of Figure 2. Lines 2 and 4 show that
w and z both point to the A object allocated at line 1. Hence, these
lines are explainers for the heap-based value flow between lines 5
and 7 in the thin slice. Line 6 explains control flow, showing the
condition under which the seed statement actually executes.

Thin slicing’s separation of producer and explainer statements
provides a natural, structured method for exploring a traditional
slice. Traditional slices must include transitive explainer statements
(i.e., explainers for the explainers and so on), since any statement
possibly affecting the seed is relevant for such a slice. While this
transitivity can lead to an overwhelming number of explainer state-
ments, thin slices structure them into a manageable hierarchy. Ex-
plainers for heap-based value flow in a thin slice can be shown us-
ing two additional thin slices, as shown in Section 4.1. The behavior
of a conditional guarding a thin slice statement can also be under-
stood through an additional thin slice. In this manner, more and
more thin slices can be used to show explainers, in the limit yield-
ing the traditional slice.

In practice, we have found that very few explainers are needed
to accomplish typical debugging and understanding tasks. In our
evaluation, over half the tasks could be completed with a thin slice
alone. In most other cases, only one or two explainer statements

114

v = z.fw.f = y

w = x

y = new B()

z = xx = new A() w == z

Figure 3. A dependence graph for the program of Figure 2. Thick
edges indicate non-base-pointer flow dependences, used for thin
slicing. Traditional slicing also uses base pointer flow dependences
(the dashed edges) and control dependences (the dotted edge).

were required, and these explainers were lexically close to thin slice
statements (further discussed in Section 4.2). Hence, thin slicing is
highly effective at identifying the statements in a traditional slice
most relevant to developer tasks.

3. Thin Slices as Dependences
In Section 2, we defined thin slices in terms of producer statements.
Here we define thin slices in terms of the dependences typically
used to define traditional slices. The thin slice for a seed s is
a subset of those statements upon which s is transitively flow
dependent (also known as data dependent), obtained by ignoring
uses of base pointers in dereferences.

A statement s is flow dependent on statement t if the following
three conditions hold [10]:

1. s can read from some storage location l.
2. t can write to l.
3. There exists a control-flow path from t to s on which l is not

re-defined.

For Java-like languages, storage locations are either variables (local
or global) or object fields, with the latter accessed through some
field dereference of the form x.f. Traditional slices must include
the transitive flow dependences of the seed.

Thin slices ignore base pointer flow dependences, thereby
excluding statements explaining heap-based value flow. A base
pointer flow dependence is a flow dependence due solely to the
use of a pointer in a field dereference. For the statement y = x.f,
flow dependences due to the use of x are base pointer flow depen-
dences. Similarly, a statement of the form p.f = q has base pointer
flow dependences due to the use of p. Ignoring base pointer flow
dependences leaves only producer flow dependences, which transi-
tively connect a statement to its producers. For example, y = x.f
would have a producer flow dependence to some statement z.f =
w, where x and z may be aliased.

Figure 3 shows an example dependence graph for the pro-
gram of Figure 2. Nodes represent statements, and edges represent
dependences between statements. As is standard for dependence
graphs [11, 22], edges are drawn in the direction opposite of the
dependences, so thin slicing requires computing backwards reach-
ability. In Figure 3, the solid edges indicate the producer flow de-
pendences, while the dashed edges indicate ignored base pointer
flow dependences. The dotted edge is a control dependence, to be
discussed shortly. The seed v = z.f is only reachable from w.f =
y and y = new B() via solid edges, and these statements are the
producers for the seed, as expected.

Note that thin slices also exclude control dependences, explain-
ers of control flow. Intuitively, statement s is control dependent on
conditional e if e can affect how many times s executes (Tip’s sur-
vey [27] has a more formal definition). Figure 3 has a dotted control
dependence edge from conditional w == z to v = z.f, the state-
ment in its if block in Figure 2. Section 4 describes our empirical
observation that important control dependences are nearly always

1 class File {
2 boolean open;
3 File() { ...; this.open = true; }
4 isOpen() { return this.open; }

5 close() { ...; this.open = false; }
6 ...
7 }
8 readFromFile(File f) {
9 boolean open = f.isOpen();

10 if (!open)

11 throw new ClosedException();
12 } ...
13 }
14 main() {
15 File f = new File();
16 Vector files = new Vector();
17 files.add(f);
18 ...;
19 File g = (File)files.get(i);
20 g.close();
21 ...;
22 File h = (File)files.get(i);
23 readFromFile(h);
24 }

Figure 4. An example for showing expansion of thin slices, simi-
lar to an example we saw in our evaluation. The bug is an exception
thrown at line 11, and understanding the bug requires an explana-
tion of aliasing (Section 4.1) and following a control dependence
(Section 4.2). We use single underlines to highlight relevant expres-
sions in the initial thin slice, and double underlines for expressions
in explainer statements for aliasing.

lexically close to thin slice statements, and hence can be discovered
easily.

4. Expanding Thin Slices
Here, we discuss in more detail how thin slices can be expanded
to show explainer statements, as discussed in Section 2. To review,
explainer statements can answer questions of the following form
about a thin slice T :

1. Given statements x := y.f and w.f := z in T such that w and
y are aliased (causing value flow from z to x), what statements
cause the aliasing?

2. Under what conditions can some statement s in T execute?

A thin slicing tool answers these questions when requested by
the user. Section 4.1 discusses a technique for explaining aliasing
using two additional thin slices. Section 4.2 discusses how relevant
control dependences are usually “close” to thin slice statements,
making their discovery relatively straightforward.
Example We use the example in Figure 4, a simple program frag-
ment manipulating a file, to illustrate thin slice expansion. The ex-
ample displays only a small part of the File implementation, the
tracking of whether the file is open using a boolean field. The
readFromFile() function throws an exception if the file passed to
it is not open. Finally, the main() method creates a file, erroneously
closes it, and then passes it to readFromFile(), causing the excep-
tion. The File object is read from a Vector before being passed to
close() and readFromFile(), complicating discovery of the bug.

115

4.1 Question 1: Explaining Aliasing
When a thin slice includes statements that copy a value through
the heap, sometimes the user needs to understand why those state-
ments access the same heap location. For the example of Figure 4,
suppose that the user asks for a thin slice from line 10 to determine
why line 11 threw an exception. The computed thin slice will be
{3, 4, 5, 9, 10} (highlighted with underlines), the only statements
that can produce the boolean open value. Clearly, these statements
fail to diagnose the bug completely: the user still does not know
which File is passed to close() before being passed to isOpen().
To diagnose this bug, the user must determine which statements
cause the ‘this’ pointers of close() and isOpen() to be aliased.

We can expand thin slices to explain aliasing by computing
additional thin slices for the base pointers in question. Given aliased
base pointers x and y, we compute thin slices seeded with the
statements defining x and y (unique assuming SSA form). These
thin slices will show why some common object o can flow to both
x and y, causing them to be aliased. For Figure 4, the common
object for the ’this’ parameters of close() and isOpen() is the
File allocated at line 15. Double underlines in Figure 4 indicate
the statements added to explain the flow of the File (the Vector
class is elided for clarity). Note line 16 is still omitted, as it does
not touch the File object. Given these thin slices, the user sees that
line 20 closes the File, and that the bug could be fixed by either
not closing the file or by removing it from the Vector.

Explaining aliasing using additional thin slices yields an intu-
itive hierarchical structure to heap-based flow, making it more un-
derstandable for the user. Suppose that statements x := y.f and
w.f := z appear in a thin slice. Expanding the thin slice to show
flow into x and w adds one more level of data dependences to the
slice. If during expansion, statements a := b.g and c.g := d are
added, the aliasing of b and c could be explained with another level
of data dependences, and so on. If Figure 4 were changed so that
the flow of the Vector to the add() and get() in main() was com-
plex (e.g., it got stored in a data structure), another level of thin
slices would explain that flow. The ability to show these different
levels of aliasing in a structured manner relies on the fact that only
field reads and writes can dereference pointers in Java; in C, which
allows for creating pointers to pointers and taking addresses of vari-
ables, explanations of why two statements access the same memory
location may not be so simple.

Array accesses can require explainer statements beyond those
showing the aliasing of the array pointers. Say that we have state-
ments a = b[i] and c[j] = d in the thin slice, such that there is
value flow from d to a. In trying to understand this heap-based flow,
the user may wonder both (1) how b and c can be aliased (the same
question as with field accesses), and additionally (2) how the array
indices i and j can have the same value. The latter question can be
answered through thin slices on each of the array index expressions
(with any necessary expansion).

Two additional technical points about explaining aliasing merit
mention. First, the thin slices explaining aliasing should be re-
stricted to only show the flow of objects that can flow to both base
pointers, filtering statements showing flow of an object to just one
of them. This filtering eliminates some statements irrelevant to ex-
plaining the aliasing. Second, context sensitivity may be necessary
to focus the aliasing explanations in some cases. For example, if
the code of Figure 4 were part of a large program where many File
objects were used, the user would likely want to ask about aliasing
’this’ in isOpen() for the particular call at line 9, rather than for
all calls.

We encountered one case in which an explanation of aliasing
was necessary in our experiments, and we believe that many sim-
ilar situations often arise in practice. In our programming experi-
ence, we have found that when such bugs arise, they can be tricky

to debug, as values can be mutated in unexpected places. Analyses
that find typestate bugs [6, 8], e.g., reading from a file after clos-
ing it, could benefit from using thin slices to explain bugs that in-
volve aliasing. Such tools sometimes hide error reports that involve
aliasing, since there is no mechanism in the tool for explaining the
aliasing succinctly [15].

4.2 Question 2: Control Dependence
In our experience, when a debugging or program understanding
task requires viewing control dependences, the control-relevant
statements usually lie lexically close to some statement in the thin
slice. In Figure 4, the bug manifests at line 11, which throws the
exception. As no value flows into the throw statement, a thin slice
from the throw statement will not aid debugging. However, code
inspection immediately shows that the condition of the if statement
at line 10 is relevant to the bug, as it directly controls whether the
exception is thrown. With this information, the obvious next step is
to thin slice from line 10 to learn more about the bug, as described
in Section 4.1.

While this example may seem contrived, our experiments show
that Figure 4 reflects the common case. For nearly all tasks in our
evaluation, at most one or two control dependences were relevant,
and they all lay syntactically close to statements in the thin slice.
We also found that the vast majority of control dependences are
unnecessary for understanding the seed behavior. Hence, we be-
lieve that in practice, simply showing the thin slice statements in
the source code suffices for identifying any relevant control depen-
dences; the user can take additional thin slices from relevant con-
ditionals to understand their behavior. Additional tool support may
be useful for indicating non-obvious control dependences, e.g., due
to exceptions.

5. Computing Thin Slices
Computing a thin slice entails computing a statement’s transitive
flow dependences, ignoring uses of base pointers (as discussed in
Section 3). As in previous work on slicing [11, 20], we compute
thin slices using variants of graph reachability. Here, we first de-
scribe the basics of constructing our graph representation, a subset
of system dependence graphs [11] (Section 5.1). Then, we briefly
present two simple algorithms to compute thin slices, one context
insensitive (Section 5.2) and one context sensitive (Section 5.3).

5.1 Graph Construction
In both thin slice algorithms, we first compute a subset of the sys-
tem dependence graph (SDG) program representation of Horwitz
et al. [11]. Previous work [3, 13] has described how to compute
SDGs for Java-like languages, and we mostly re-use those tech-
niques (slight differences are discussed in Section 7). Our imple-
mentation handles the full Java Virtual Machine bytecode language,
excluding concurrency. Our representation differs in that we (1) ex-
clude control dependence edges and (2) handle heap-based flow
dependences differently, depending on the thin slicing algorithm
(details in Section 5.2 and Section 5.3).

SDG construction relies on a pre-computed points-to analysis.
We use the points-to analysis to compute a call graph for the
program, necessary for tracking interprocedural dependences. We
also use the points-to analysis to determine which heap locations
can be defined (used) by field writes (reads), in order to track heap-
based value flow. Section 6 shows that precise points-to analysis is
key for effective thin slicing of Java programs.

Our representation of data dependences for local variables and
method parameters is straightforward. At a high level, we represent
such dependences as follows:

116

1. For a statement x = e, where x is a local, we add edges to all
statements using x, excluding uses in pointer dereferences of
the form x.f. We operate on an SSA representation, so these
edges are added flow sensitively.

2. For an actual parameter node for a call to method m(), we query
the pre-computed call graph to find the possible call targets
m1, . . . , mk. Then, for each mi, we add an edge from the actual
parameter node to the corresponding formal parameter node.
Return values are handled similarly.

Our thin slicing algorithms differ from the standard SDG handling
of data dependence, and from each other, in their treatment of
definitions of heap locations (i.e., statements of the form x.f :=
e) as described below.

5.2 Context-Insensitive Thin Slicing
Our first algorithm computes traditional (context-insensitive) graph
reachability on our SDG variant to compute thin slices. In this ap-
proach, we represent data dependences for heap access statements
as follows:

• For a statement x.f := e, we add an edge to each statement
with an expression w.f on its right-hand side, such that the pre-
computed points-to analysis indicates x may-alias w.

Note that we add direct edges to statements in other procedures.
In contrast, the traditional SDG only includes interprocedural edges
for parameter passing and return values. The advantage of this ap-
proach is that we need not model heap accesses using additional pa-
rameters and return values, as is done with traditional slicing [11].
In practice, not using heap parameters dramatically increases scala-
bility without significant loss in precision (discussed further in Sec-
tion 5.3 and Section 6).

Having computed the graph, a simple transitive closure gives the
thin slice for a particular seed. It is straightforward to construct the
graph and do the traversal in a demand-driven fashion. A potential
disadvantage of this approach is that it may return unrealizable
paths [21] due to lack of context sensitivity (Section 6 shows this
issue is not significant in practice).

5.3 Context-Sensitive Thin Slicing
The context-sensitive thin slicing algorithm uses an SDG variant
closer to that used in traditional slicing, created compositionally
from program dependence graphs (PDGs) for each procedure. In-
traprocedurally, this approach handles heap accesses as follows:

• For a statement x.f := e, we add an edge to each statement
with an expression w.f on its right-hand side in the same pro-
cedure such that the pre-computed points-to analysis indicates
x may-alias w.

We handle interprocedural heap flow in the same way as the
standard SDG, with heap reads and writes modeled as extra param-
eters and return values to each procedure [5, 11]. Our implementa-
tion introduces such parameters using the same heap partitions used
by the preliminary pointer analysis. Discovering the appropriate set
of parameters for each procedure requires an interprocedural mod-
ref analysis [24], computed using the result of the pre-computed
points-to analysis.

Having built the graph, we compute context-sensitive reacha-
bility as a partially balanced parentheses problem [20]. Our imple-
mentation relies on a backwards, demand-driven tabulation algo-
rithm [21].

In our experience, constructing an SDG using heap parameters
can be very expensive for large programs. Furthermore, we found
that for realistic usage patterns, context sensitivity did not provide
much benefit for thin slicing. See Section 6 for details.

6. Evaluation
We now present an empirical evaluation of thin slicing for debug-
ging and program understanding tasks. Our experiments validate
four hypotheses:

• Thin slices lead the user to desired statements. For the tasks
we considered, thin slices often contain the desired statements
(e.g., the buggy statement for a debugging task). When state-
ments explaining pointer aliasing or control flow were relevant,
the statements were always lexically close to statements in the
thin slice. Subjectively, we also found a thin slicer very useful
for understanding one set of benchmarks.

• Thin slices focus better on desired statements than tra-
ditional slices. We compared context-insensitive thin slicing
to context-insensitive traditional slicing (the context-sensitive
configurations did not scale) with identical handling of control
dependences and a breadth-first strategy for inspecting state-
ments, simulating real-world use of a program understanding
tool. The experiments showed that finding desired statements
in a traditional slice required inspecting 3.3 times more state-
ments than a thin slice for the debugging tasks, and 9.4 times
more statements for the program understanding tasks.

• A precise pointer analysis is key to effective thin slicing. We
used a pointer analysis with object-sensitive handling [16] of
key collections classes for the thin slicer. With a less precise
pointer analysis, up to 17.2X more statements required inspec-
tion in thin slices to find desired statements.

• Thin slices can be computed efficiently. Our context-
insensitive thin slicing algorithm scaled well to large programs,
with the cost of computing thin slices insignificant compared
to the pre-requisite call graph construction and pointer anal-
ysis. We were unable to scale a context-sensitive traditional
slicer [11] to our larger benchmarks.

6.1 Configuration and Methodology
We implemented the thin and traditional data slicers using the IBM
T.J. Watson Libraries for Analysis (WALA) [2]. We utilized call
graph construction and pointer analysis algorithms provided by
WALA, along with its tabulation solver for context-sensitive anal-
ysis [21]. We analyzed our benchmarks with the Sun JDK 1.4.2_09
standard library code, for which WALA provides models of im-
portant native methods. WALA uses heuristics to analyze the most
common uses of reflection in Java, but in general reflection and na-
tive methods may still cause some unsoundness, as is typical in Java
static analysis implementations. All experiments were performed
on a Lenovo ThinkPad t60p with dual 2.2GHz Intel T2600 proces-
sors and 2GB RAM. The analyzer ran on the Sun JDK 1.5_07 using
at most 1GB of heap space.

Table 1 provides information about the programs used in our
experiments. For pointer analysis and call graph construction, we
used a variant of Andersen’s analysis with on-the-fly call graph
construction [4, 23], with fully object-sensitive cloning [16] for ob-
jects of key collections classes, as described in [8] (the importance
of this precision is discussed later in the section). We excluded from
the call graphs a few large standard libraries (e.g.,javax.swing,
java.awt) which we deemed a priori uninteresting for the tasks at
hand, since none of our tested tasks involved those libraries. For all
experiments reported, call graph construction and pointer analysis
ran in under 5 minutes.
Scalability For the dependence graph traversal, we considered
both the context-insensitive (flat graph reachability) and context-
sensitive (tabulation) algorithms presented in Section 5.

In all cases, the time and space to compute the thin slice or tradi-
tional slice with the context-insensitive algorithm was insignificant

117

Program Methods Bytecode Call Graph SDG
Size (KB) Nodes Statements

Software-Artifact Infrastructure Repository
nanoxml 541 35 817 22205
jtopas 337 24 397 23766
ant 11147 632 20164 584155

xmlsec 11192 678 17075 525886
SPECjvm98
mtrt 470 32 514 19699
jess 1061 67 1466 46037
javac 1610 118 2127 71041
jack 592 55 1088 38114

Table 1. Benchmark characteristics, derived from methods discov-
ered during on-the-fly call graph construction, including Java li-
brary methods. The number of call graph nodes exceeds the number
of distinct methods due to limited cloning-based context-sensitivity
in the points-to analysis. SDG Statements reports the number of
scalar statements, but excludes parameter passing statements intro-
duced to model the heap.

compared to the preliminary pointer analysis. Context-insensitive
thin slicing took under 6 seconds for all tests except ant, which
took 47 seconds since a large number of interprocedural heap de-
pendence edges had to be added. These low running times are
not surprising, as context-insensitive slicing (thin or traditional) re-
duces to simple graph reachability on a demand-driven construction
of the SDG program representation.

Our implementation of context-sensitive traditional slicing [22]
scales to handle most experiments on the smaller test cases
(nanoxml, jtopas, mtrt, jack). For the larger codes, our imple-
mentation could not complete in reasonable time and/or space. We
believe our implementation is fairly well-tuned, as the analysis
engine (based on tabulation [20]) has evolved over several years
and been used in several studies reporting scalable interprocedural
dataflow analyses (e.g., [8]). For slicing, the key bottleneck comes
from handling of the heap; as programs grow larger, the number
of SDG statements introduced to model heap parameter-passing
quickly explodes, dramatically increasing space and time require-
ments. For our larger benchmarks, the full SDG grew to over 10
million nodes before exhausting available memory; we suspect the
number of nodes would grow much larger given adequate space.
Note that heap parameters are also a scalability bottleneck in a
commercial slicing tool [26].

In all results reported, we compare results from the context-
insensitive thin slicer to a context-insensitive traditional slicer,
which scaled to all benchmarks. This provides an apples-to-apples
comparison, as all experimental parameters match exactly for the
two algorithms; the only difference was how each handled data
dependences.
Measuring Slice Size Nearly all existing work measures the
precision of a slice by its full size. However, in practice, once a user
of a program understanding tool has discovered all of the desired
statements for her original problem (e.g., those causing some bug),
she will not inspect the rest of the slice. Our experiments aim to
simulate this realistic usage pattern.

For each task, we identify both a seed statement for the slice and
a set of desired statements, i.e., those statements whose discovery
suffices for completing the task. For example, for a debugging task,
the seed is the point of failure, and the desired statement is the
cause of the bug. We then aim to measure how many statements in
the slice the user must inspect to discover the desired statements.

We use a breadth-first traversal strategy to simulate the order
in which statements are inspected by the user, as in the work
of Renieris and Reiss [19]. Intuitively, statements “closer” to the
seed seem more likely to be relevant to its behavior. Hence, we
assume the user gradually explores statements of increasing dis-
tance (defined by the dependence graph of the technique) from
the seed until the desired statements are found; a breadth-first
search of the dependence graph simulates this strategy. Note that
CodeSurfer [1], perhaps the most widely-used slicing tool, supports
such dependence-graph browsing for viewing slices. The BFS eval-
uation metric has also been used in other recent work [19, 31, 34].
For thin and traditional slicing, our tables report the number of
statements inspected using this breadth-first inspection strategy.

To our knowledge, ours is the first work to compare static slicing
algorithms using a measure intended to simulate the usage of a
realistic tool, rather than just comparing the full slice sizes. We
note that the two measures produce qualitatively different results.
For example, in one of our smaller test cases, nanoxml-1, context
sensitivity reduces the traditional slice size from 8067 statements
to 381 statements, but the number of statements explored in the
traversal decreases only from 32 to 26. We observed similar results
for thin slices. Given these results, the context-sensitive algorithm
of Section 5.3 does not seem beneficial for thin slicing as likely
used in practice.
Control Dependence As discussed in Section 4.2, relevant control
dependences were observed to be always lexically close to state-
ments in the thin slice, as in the example of Figure 4. Furthermore,
most control dependences were not useful for the tested tasks, and
it is not obvious how to automatically expose important control de-
pendences. Hence, we manually pre-determined the important con-
trol dependences for our tasks, and counted only those control de-
pendences as inspected for both the thin and traditional slicers. This
handling of control dependences allowed us to focus on the effec-
tiveness of thin slicing’s handling of data dependences compared
with a traditional slicer’s.
Threats to Validity One threat to the validity of our results
is that our study of debugging tasks (Section 6.2) uses injected
bugs from the SIR suite [7], which may not accurately reflect the
characteristics of real bugs. Several techniques were used to make
the injected bugs in the SIR suite realistic, described in detail in [7].
The bugs were of a wide variety: they could alter both the control
and data flow of the program, and the resulting failures ranged from
program crashes to incorrect output. Nevertheless, we intend to do a
future study with real bugs to confirm that thin slicing still provides
a significant benefit.

Our use of breadth-first search on the dependence graph to
simulate programmer exploration of the slice may not accurately
reflect how developers would use a slicing tool. If most developers
are able to very quickly prune statements in a traditional slice
irrelevant to their tasks, then the BFS metric would overstate the
advantage of thin slicing. In the future, we aim to do a user study to
obtain more definitive answers on the productivity benefits of thin
slicing.

Finally, our use of whole-program pointer analysis and call
graph construction for the thin slicer may not scale to larger bench-
marks. These analyses also may not be suitable for use inside a
development environment, as code edits could require expensive
re-computation of the pointer analysis results. We plan to employ
demand-driven, refinement-based pointer analysis [25] in the next
version of the thin slicer to overcome these drawbacks.

6.2 Experiment: Locating Bugs
Our first experiment tested locating several bugs, (1) to see if thin
slices include the buggy statement when slicing from the seed,
and (2) to compare the number of inspected statements for thin

118

and traditional slices. We investigated several injected bugs in the
Java programs in the Software-Artifact Infrastructure Repository
(SIR) [7]. SIR provides both several injected bugs for each program
and test suites that can be used to expose the bugs. For each injected
bug, we ran the corresponding test suite to discover a failure. Then,
we ran both thin and traditional slicing from the failure point,
measuring how many statements had to be inspected to find the
bug (as described in Section 6.1).

Three points should be noted about the SIR programs and in-
jected bugs. First, we were unable to include two SIR programs in
these experiments, jmeter and siena. We could not determine the
appropriate library dependences to build jmeter, and in our runs,
no test cases exposed the injected bugs in siena. Also, the suite
provides several versions of each benchmark; we chose bugs from
the most recent versions. Finally, some of the injected bugs rep-
resent bugs of omission, i.e., bugs that deleted necessary code. If
the omission bug removed an assignment to a local or a conditional
branch, we chose as the desired target statements the immediate
data or control dependent successor statements, respectively. We
excluded bugs that deleted field writes, as there was no obvious re-
lationship between the deleted write and the surrounding code in
the method.

Table 2 presents results for our debugging experiment. Several
of the injected buggy statements were quite close to the failure
points of the programs, and hence both the traditional and thin
slicers found the bugs very quickly. For example, with jtopas-1,
the buggy statement itself fails with a NullPointerException.
These sorts of bugs can be easily debugged without tool support,
but we include them for completeness.

Using the traditional slicer required inspecting 1 to 4.52 times
more statements than thin slicing to find the bug. The total number
of inspected statements for traditional slicing was 3.3 times higher
than with thin slicing, a measure of the total inspection effort saved.
The injected bugs in nanoxml in particular often required tracing a
value as it is inserted and later retrieved from one or two Vectors,
as in the example of Figure 1. Tracing this flow by hand can be
difficult and time-consuming, and hence we think that thin slicing
can have the greatest impact for this type of bug.

Debugging nanoxml-5 required exposing statements causing
aliasing (see Section 4.1), for reasons similar to those of the exam-
ple in Figure 4. To simulate this user action, we ran the thin slicer
in a configuration that included statements explaining one level of
indirect aliasing. The results show that exposing such statements in
this controlled manner is useful, as we still inspected significantly
fewer statements than the traditional slice.

Few control dependences were relevant for these debugging
tests, validating our decision to ignore control dependence in thin
slices. For all but one bug, the number of control dependences
that need to be followed is 2 or less. These control dependences
were always obvious from code surrounding the thin slice (as
discussed in Section 4.2). The high number of control dependences
for ant-3 is due to the fact that the buggy function has 12 return
statements, and one of them is directly control dependent on the
bug; we included one control dependence for each return, as it is
not obvious which one caused the bug. Nevertheless, all the control
dependences were still near statements in the thin slice.

The precision of our preliminary points-to analysis was key
to the effectiveness of the thin slicer. The “ThinNoObjSens” and
“TradNoObjSens” columns in Table 2 show our results to be con-
siderably worse with a points-to analysis that does not treat con-
tainer classes like Vector object sensitively. In cases involving such
data structures, the number of statements inspected with the thin
slice increased by up to a factor of 17.2X with the less precise anal-
ysis, likely making the thin slicing tool unusable.

1 class Node {
2 final int op;
3 static int ADD_NODE_OP = 1;
4 Node(int op) { this.op = op; }

5 }
6 class AddNode extends Node {
7 AddNode(...) {
8 super(ADD_NODE_OP); ...
9 }

10 }
11 void simplify(Node n) {
12 int op = n.op;

13 switch (op) {

14 case ADD_NODE_OP:
15 AddNode add = (AddNode) n;
16 ...
17 }
18 }

Figure 5. An example illustrating a tough cast. Expressions in the
thin slice used to understand the safety of the cast are underlined.

Finally, for five bugs in xml-security and one bug in ant, no
type of slicing could help the user find the bug, and hence they do
not appear in the table. The xml-security bugs all followed the
same pattern:

long hash = computeHash(input); // buggy
assert hash == expectedHash; // fails

In xml-security, the computeHash() equivalent is complex, span-
ning several .class files, and the injected bugs were buried in the
algorithm internals. In such cases, slicing from this assertion fail-
ure (whether static or dynamic) will inevitably bring in most or all
of the code that computes the hash function. This example illus-
trates that slicing of course is not a panacea; delta debugging [29]
or refactoring to test at a finer granularity may help in these situa-
tions. We find the fact that thin slicing was useful for 13 out of 19
inspected bugs encouraging.

In summary, we found that for these injected bugs, thin slices
very often contain the buggy statements, and the bugs could be
found more quickly with a thin slicer than a traditional slicer. Also,
11.5 statements on average required inspection with the thin slicer
(ranging from 1 to 35), quite a manageable number; the average
for the traditional slicer was significantly larger at 54.8 statements,
ranging from 1 to 156.

6.3 Experiment: Understanding Tough Casts
Our second experiment involved using slicing to hand-validate the
safety of tough casts in the SPECjvm98 benchmarks. A tough cast
is a downcast in a program that cannot be verified by precise and
scalable pointer analysis (we used the same pointer analysis used
to construct our call graph). For example, the cast at line 15 in
Figure 5, adapted from the javac benchmark, is a tough cast. This
cast cannot fail because the value of the op field of AddNode objects
is ADD_NODE_OP, as guaranteed by line 8, and no other subclasses
of Node (not shown) have ADD_NODE_OP in their op field. Typically,
tough casts are those that (1) are not used to cast values retrieved
from a container (due to lack of generics) and (2) are not dominated
by an explicit instanceof check ensuring their safety.

Tough casts present a good test of the efficacy of thin slicing in
aiding program understanding. The safety of tough casts is often
due to some global invariant of a program. These invariants are of-

119

Bug # Thin # Trad. Ratio # Control # ThinNoObjSens # TradNoObjSens
nanoxml-1 12 32 2.67 0 12 32
nanoxml-2 25 113 4.52 0 431 1675
nanoxml-3 29 123 4.24 0 472 1883
nanoxml-4 12 33 2.75 1 17 44
nanoxml-5 35 156 4.46 1 159 45
nanoxml-6 12 52 4.33 0 35 90
jtopas-1 1 1 1 0 1 1
jtopas-2 2 2 1 1 2 2
ant-1 2 2 1 1 2 2
ant-2 4 5 1.25 0 4 5
ant-3 34 55 1.62 15 251 501
ant-4 3 3 1 2 3 3

xml-security-1 2 2 1 1 2 2

Table 2. Evaluation of thin slicing for debugging. For each bug, we show the number of statements that must be inspected in the thin slice
(the “Thin” column) and the traditional slice (the “Trad” column) to discover the bug using BFS traversal (see Section 6.1). We also give
the ratio of traditional statements to thin slice statements, and the number of control dependences that must be exposed to find the bug;
the numbers for thin and traditional slices include these control dependences. Finally, we give the number of inspected statements for thin
and traditional slicing when container classes are not treated object sensitively [16] in the points-to analysis (the “ThinNoObjSens” and
“TradNoObjSens” columns). Slicing of any kind was not useful for five bugs in xml-security and one bug in ant; these bugs do not appear
in the table.

ten (in our experience) undocumented, and discovering the invari-
ants can aid the programmer in understanding the overall structure
and behavior of the program. Furthermore, discovering these in-
variants by hand can be difficult, as it often requires tracing value
flow through several disparate parts of the program. Hence, easing
the understanding of tough casts with tool support aids overall pro-
gram understanding and additionally can be useful for refactoring
or adding parameterized types or annotations.

Our experimental configuration involved first manually identi-
fying those statements that showed each tough cast could not fail
(the desired statements of Section 6.1) with the help of the thin
slicer, and then comparing the BFS traversal sizes of the thin and
traditional slices from the cast to these desired statements. In the
example of Figure 5, we can understand the tough cast through thin
slicing by following a control dependence from the cast, and then
computing a thin slice for line 12 to see what value op gets for
different subclasses of Node. For each SPEC benchmark, we inves-
tigated 10 tough casts at random, or all tough casts if there were
fewer than 10.

Note that the compress and db benchmarks had no tough casts,
and mpegaudio was excluded since its bytecodes are obfuscated,
making understanding its casts difficult. Also, we failed to deter-
mine the reason for cast safety for 6 casts in javac and one cast
in jess. In these cases, the safety of the cast relies on some subtle
invariant that is not easy to determine for one unfamiliar with the
code.

The thin slicer significantly eased the manual process of deter-
mining the desired statements for each tough cast. Although the
code was unfamiliar to us, our thin slicing tool guided us through
heap-based value flow, saving a great deal of time. The thin slicer
was especially helpful when source code was not available, e.g.,
for the jack benchmark, as we had to study a compiler representa-
tion of the bytecodes and could not use standard IDE-based source
navigation tools.

Results for the tough casts experiment appear in Table 3. Thin
slicing helped understand tough casts more effectively than tradi-
tional slicing: the number of statements examined using a tradi-
tional slice exceeded by 1.17 to 34.2 times the number examined
using a thin slice. In total, 9.4 times more statements were exam-
ined with the traditional slicer than the thin slicer. In javac, the
casts resembled Figure 5. The code includes a large number of Node

subclasses used pervasively in the program, resulting in large num-
bers for the traditional slicer. The importance of object-sensitive
container handling in the points-to analysis is seen for the jack
casts, where the number of inspected statements increased by fac-
tors of 5.9-16.9X with less precise analysis.

The absolute numbers of inspected statements exceeded those
for the debugging tests, but they remained manageable for a user.
The thin slicer required inspecting an average of 29.3 statements
(ranging from 6-65), while the traditional slicer required an average
of 280 (ranging from 6 to 2224). For javac, many of the thin slice
statements were writes of opcodes in a large number of constructors
(like in Figure 5), which could be quickly inspected to ensure that
a suitable constant is written. For jack, the BFS traversal over-
estimated the number of thin slice statements that needed to be
inspected; once we understood the benchmark, we could terminate
the search early at some statements which we knew would not cause
the cast to fail.

In summary, we conclude thin slicing can effectively provide
tool support to identify statements that ensure tough casts cannot
fail. A traversal based on thin slicing typically touches significantly
fewer statements than a traversal based on traditional transitive flow
dependence.

7. Related Work
Since first being defined by Weiser in 1979 [28], slicing has in-
spired a large body of work on computing slices and on applica-
tions to a variety of software engineering tasks. We refer the reader
to Tip’s survey [27] and Krinke’s thesis [12] for broad overviews
of slicing technology and challenges. Here, we focus on the work
most relevant to our own.

Our thin slicing algorithm is a straightforward adaptation of the
SDG-based approach first presented by Horwitz et al. [11]. Our
implementation of a traditional slicer is in fact tabulation-based, as
suggested in [20] and the 20-year Retrospective to [11].

CodeSurfer [1] is a program understanding tool for C and C++
based on the analysis techniques of [11, 22]. CodeSurfer also uses
pointer analysis to allow navigation from a use of a heap location
to potential defs. Our evaluation metric of a breadth-first traversal
strategy aims to simulate use of a tool like CodeSurfer, which
allows for navigating the dependence graph. While CodeSurfer

120

Cast # Thin # Trad. Ratio # Control # ThinNoObjSens # TradNoObjSens
mtrt-1 22 51 2.32 0 22 51
mtrt-2 23 52 2.26 0 23 52
jess-1 6 7 1.17 2 6 7
jess-2 13 39 3 0 25 93
jess-3 6 6 1 2 6 6
jess-4 6 7 1.17 2 6 7
jess-5 6 7 1.17 2 6 7
jess-6 6 6 1 2 6 6
javac-1 57 910 16 1 57 910
javac-2 43 853 19.8 1 43 853
javac-3 65 2224 34.2 1 65 2267
javac-4 45 855 19 1 45 855
jack-1 18 79 4.39 0 303 758
jack-2 57 151 2.65 0 339 647
jack-3 18 69 3.83 0 304 603
jack-4 18 79 4.39 0 304 759
jack-5 57 151 2.65 0 339 647
jack-6 35 132 3.77 0 338 802
jack-7 35 132 3.77 0 338 802
jack-8 35 132 3.77 0 338 802
jack-9 30 79 2.63 0 304 759
jack-10 57 151 2.65 0 339 647

Table 3. Evaluation of thin slicing for understanding tough casts. The types of data in the table columns are described with Table 2.

allows navigation of all control and data dependences, thin slicing
emphasizes producer statements and shows explainer statements
using additional thin slices (see Section 2); our evaluation has
shown that this technique quickly leads users to the most relevant
statements.

Atkinson and Griswold [5] present a slicer relying on a prelim-
inary flow-insensitive pointer analysis. This work targets C, and
so had to deal with difficulties arising from issues such as stack-
directed pointers and unsafe memory access, which do not arise in
Java. Larsen and Harrold [13] presented one of the first slicing ap-
proaches for object-oriented software, adding pseudo-parameters
for fields to track dependencies through the heap. Our context- sen-
sitive slicer implementation uses a similar approach, but relies on
a partially context-sensitive preliminary pointer analysis to disam-
biguate locations with field- and object-sensitivity, and additional
pseudo-parameters to soundly handle all fields that may be ac-
cessed transitively by callees.

In recent years, several papers have improved precision by in-
tegrating more precise static alias analysis into slicing. Liang and
Harrold [14] present a novel approach to represent formal parame-
ter objects with trees. Hammer and Snelting [9] present an enhance-
ment to this approach, including a criterion for sound limiting of
tree sizes for recursive data structures. Both these approaches are
more powerful than relying solely on a preceding flow-insensitive
alias analysis, since must-alias information on parameters can al-
low sound strong updates. It is not clear how far these algorithms
scale; the experimental results of Hammer and Snelting address
programs significantly smaller than the benchmarks considered
here. In future work, we plan to incorporate aspects of Hammer
and Snelting’s approach for thin slices.

Orso et al. [18] present a classification of data dependence edges
in an SDG, based on certainty of may-alias information, and the
span (scope) of a program over which a data dependence flows.
They propose an incremental slicing procedure to aid debugging,
whereby a tool can provide progressively larger slices by including
progressively more classes of data dependencies. Our thin slice
expansion technique is similar in spirit, but goes in a different

direction by expanding slices to include statements that indirectly
give rise to the primary alias relations.

Mock et al. [17] showed that for C programs with heavy pointer
use, using dynamic points-to data significantly improved slice pre-
cision over a conservative flow-insensitive pointer analysis. We sus-
pect Java programs resemble C programs with heavy pointer use
with regard to data dependence.

PSE [15] is a static analysis tool for localizing the causes of
typestate errors in C and C++ programs by essentially computing
a variant of a backward slice, with extra filtering based on the
type of error. Their system is able to perform strong updates on
the heap in some situations, using a technique we plan to try in
our thin slicer. Their work unsoundly ignores may-aliasing in some
configurations, partly due to the fact that traces involving aliasing
are hard for developers to understand. If applied to a Java-like
language, our technique for explaining aliases in thin slices may
help solve this problem, as discussed in Section 4.1.

Recently, Zhang et al. have considerably improved the state-of-
the-art in dynamic slicing [30, 31, 32, 33]. Thin slicing applies nat-
urally to dynamic data dependences, and we believe dynamic thin
slices could provide benefits similar to static thin slices. Zhang et
al.’s work on improving scalability [32, 33] could be leveraged to
create a more scalable dynamic thin slicer. Their recent work on
pruning dynamic slices [30] is complementary to ours: thin slicing
and their heuristics for determining when a statement is unlikely to
be relevant (based on which statements output good and bad val-
ues) could be fruitfully combined. Recent work [31] observes that
using dynamic data dependences alone can often identify buggy
statements in C programs; we suspect that in fact those data depen-
dences considered by a thin slicer would also be sufficient. Finally,
this work [31] also suggests exploring statements closer to the seed
first when viewing a slice, an idea we also use in our evaluation.

8. Conclusions
We have described thin slicing, a novel approach to finding relevant
statements for some seed computation. The key difference between
thin slicing and traditional slicing is the use of a more selective

121

notion of relevance; thin slices only include statements producing
the value at the seed, rather than all statements that can possibly
affect it. Our evaluation shows that desired statements could be
found with thin slices while inspecting 3.3 times fewer statements
than traditional slices for debugging tasks and 9.4 times fewer state-
ments for program understanding tasks. Furthermore, we show that
a context-insensitive thin slicer, based on precise pointer analysis
and call graph construction, can scale to large benchmarks. Thin
slicing provides the basis for a practical and effective program un-
derstanding tool, as it provides significant help for finding state-
ments relevant to tasks and scales to large, realistic Java programs.
Acknowledgements This work is supported in part by the IBM
OCR program, the National Science Foundation with grants CCF-
0085949, CCR-0105721, CCR-0243657, CNS-0225610, CCR-
0326577, CNS-0524815, and CCF-0613997 the University of Cal-
ifornia MICRO program, an Okawa Research Grant, a Hellman
Family Faculty Fund Award, and a Microsoft Graduate Fellow-
ship. This work has also been supported in part by the Defense
Advanced Research Projects Agency (DARPA) under contract No.
NBCHC020056. The views expressed herein are not necessarily
those of DARPA.

We thank Susan Graham for her suggestion of the name “thin
slicing.” We also thank Dave Mandelin, Adam Chlipala, and the
anonymous reviewers for their helpful comments.

References
[1] CodeSurfer. http://www.grammatech.com/products/codesurfer/.
[2] T.J. Watson Libraries for Analysis. http://wala.sourceforge.net.
[3] M. Allen and S. Horwitz. Slicing Java programs that throw and catch

exceptions. In PEPM ’03: Proceedings of the 2003 ACM SIGPLAN
workshop on Partial evaluation and semantics-based program manip-
ulation, pages 44–54, New York, NY, USA, 2003. ACM Press.

[4] L. O. Andersen. Program Analysis and Specialization for the C
Programming Language. PhD thesis, University of Copenhagen,
DIKU, 1994.

[5] D. C. Atkinson and W. G. Griswold. Effective whole-program analysis
in the presence of pointers. In Foundations of Software Engineering,
pages 46–55, 1998.

[6] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program verifi-
cation in polynomial time. In Conference on Programming Language
Design and Implementation (PLDI), 2002.

[7] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experi-
mentation with testing techniques: An infrastructure and its potential
impact. Empirical Software Engineering, 10(4), October 2005.

[8] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective
typestate verification in the presence of aliasing. In International
symposium on Software testing and analysis (ISSTA), 2006.

[9] C. Hammer and G. Snelting. An improved slicer for Java. In Proceed-
ings of the ACM-SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pages 17–22, 2004.

[10] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for pointer
variables. In Conference on Programming Language Design and
Implementation (PLDI), 1989.

[11] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. In Conference on Programming Language Design
and Implementation (PLDI), 1988.

[12] J. Krinke. Advanced Slicing of Sequential and Concurrent Programs.
PhD thesis, University of Passau, 2003.

[13] L. Larsen and M. J. Harrold. Slicing object-oriented software. In
International Conference on Software Engineering (ICSE), 1996.

[14] D. Liang and M. J. Harrold. Slicing objects using system dependence
graphs. In ICSM, pages 358–367, 1998.

[15] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang. PSE: ex-
plaining program failures via postmortem static analysis. In SIGSOFT
’04/FSE-12: Proceedings of the 12th ACM SIGSOFT twelfth interna-
tional symposium on Foundations of software engineering, pages 63–
72, New York, NY, USA, 2004. ACM Press.

[16] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object
sensitivity for points-to analysis for java. ACM Trans. Softw. Eng.
Methodol., 14(1):1–41, 2005.

[17] M. Mock, D. C. Atkinson, C. Chambers, and S. J. Eggers. Improving
program slicing with dynamic points-to data. SIGSOFT Softw. Eng.
Notes, 27(6):71–80, 2002.

[18] A. Orso, S. Sinha, and M. J. Harrold. Classifying data dependences
in the presence of pointers for program comprehension, testing, and
debugging. ACM Transactions on Software Engineering and Method-
ology (TOSEM), 13(2):199–239, 2004.

[19] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor
queries. In IEEE International Conference on Automated Software
Engineering (ASE), 2003.

[20] T. Reps. Program analysis via graph reachability. Information
and Software Technology, 40(11-12):701–726, November/December
1998.

[21] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In ACM Symposium on Principles of
Programming Languages (POPL), 1995.

[22] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up slicing. In
ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (FSE), New Orleans, LA, December 1994.

[23] A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for Java
using annotated constraints. In Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), Tampa
Bay, Florida, October 2001.

[24] B. G. Ryder, W. A. Landi, P. A. Stocks, S. Zhang, and R. Altucher.
A schema for interprocedural modification side-effect analysis with
pointer aliasing. ACM Trans. Program. Lang. Syst., 23(2):105–186,
2001.

[25] M. Sridharan and R. Bodík. Refinement-based context-sensitive
points-to analysis for Java. In Conference on Programming Language
Design and Implementation (PLDI), 2006.

[26] T. Teitelbaum. Personal communication regarding CodeSurfer. 2007.
[27] F. Tip. A survey of program slicing techniques. Journal of program-

ming languages, 3:121–189, 1995.
[28] M. D. Weiser. Program slices: formal, psychological, and practical

investigations of an automatic program abstraction method. PhD
thesis, University of Michigan, Ann Arbor, 1979.

[29] A. Zeller. Isolating cause-effect chains from computer programs.
SIGSOFT Softw. Eng. Notes, 27(6):1–10, 2002.

[30] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices with
confidence. In Conference on Programming Language Design and
Implementation (PLDI), 2006.

[31] X. Zhang, N. Gupta, and R. Gupta. A study of effectiveness of dy-
namic slicing in locating real faults. Empirical Software Engineering,
2006. To appear.

[32] X. Zhang, R. Gupta, and Y. Zhang. Efficient forward computation of
dynamic slices using reduced ordered binary decision diagrams. In
International Conference on Software Engineering (ICSE), 2004.

[33] X. Zhang, S. Tallam, and R. Gupta. Dynamic slicing long running
programs through execution fast forwarding. In ACM SIGSOFT Sym-
posium on Foundations of Software Engineering, 2006.

[34] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken. Statistical
debugging: Simultaneous identification of multiple bugs. In Proceed-
ings of the 23rd International Conference on Machine Learning, 2006.

122

	Introduction
	Defining Thin Slices
	Thin Slices as Dependences
	Expanding Thin Slices
	Question 1: Explaining Aliasing
	Question 2: Control Dependence

	Computing Thin Slices
	Graph Construction
	Context-Insensitive Thin Slicing
	Context-Sensitive Thin Slicing

	Evaluation
	Configuration and Methodology
	Experiment: Locating Bugs
	Experiment: Understanding Tough Casts

	Related Work
	Conclusions

