
Summarized Trace Indexing and Querying
for Scalable Back-in-Time Debugging

Guillaume Pothier and Éric Tanter

PLEIAD Laboratory
Computer Science Department (DCC)

University of Chile – Chile
www.pleiad.cl

Abstract. Back-in-time debuggers offer an interactive exploration in-
terface to execution traces. However, maintaining a good level of inter-
activity with large execution traces is challenging. Current approaches
either maintain execution traces in memory, which limits scalability, or
perform exhaustive on-disk indexing, which is not efficient enough.

We present a novel scalable disk-based approach that supports effi-
cient capture, indexing, and interactive navigation of arbitrarily large ex-
ecution traces. In particular, our approach provides strong guarantees in
terms of query processing time, ensuring an interactive debugging expe-
rience. The execution trace is divided into bounded-size execution blocks
about which summary information is indexed. Blocks themselves are dis-
carded, and retrieved as needed through partial deterministic replay. For
querying, the index provides coarse answers at the level of execution
blocks, which are then replayed to find the exact answer. Benchmarks
on a prototype for Java show that the system is fast in practice, and
outperforms existing back-in-time debuggers.

1 Introduction

Execution traces are a valuable aid in program understanding and debugging.
Most research is centered on the capture of execution traces for offline automatic
analysis [7,17,20]. However, there has been a recent surge of interest in interactive
trace analysis through back-in-time, or omniscient, debuggers [5,8,9,10,11,12,13].
Such debuggers allow forward and backward stepping and can directly answer
questions such as “why does variable x have value y at this point in time?”, thus
greatly facilitating the analysis of causality relationships in programs.

The navigation operations provided by back-in-time debuggers are based on a
small set of conceptually very simple queries. To achieve interactive navigation,
those queries must execute extremely quickly, regardless of the size of the execu-
tion trace. It is therefore necessary to build and use indexes, otherwise queries
would require scanning arbitrarily large portions of the execution trace. Inter-
active navigation in large execution traces requires an efficient indexing scheme
tailored to the core set of back-in-time debugging queries:

M. Mezini (Ed.): ECOOP 2011, LNCS 6813, pp. 558–582, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Summarized Trace Indexing and Querying 559

Bidirectional stepping. These queries are similar to the usual stepping op-
erations provided by traditional debuggers, with the added benefit of being
able to perform them both forward and backward in time. Step into opera-
tions are very simple, as they consist in navigating to the next or previous
event in the trace. Step over and step out operations, on the other hand, are
more complex, as they require to skip all the events that occurred inside a
method call. As the number of events to skip is potentially huge, it is not
efficient to just perform a linear scan of the trace.

Memory inspection. Back-in-time debuggers support the inspection of the
values of memory locations (such as object fields and local variables) at any
point in time. To retrieve the value of a location at a particular point in time,
the query to process consists in determining the last write operation to that
location before the currently observed point. Again, as the last write can
have happened much before the current observation point, it is not efficient
to linearly scan the trace.

Causality links. Back-in-time debuggers support navigating via causality links,
e.g. by instantly jumping to the point in time where a memory location was
assigned its currently observed value. The corresponding query is actually
the same as the one used to perform memory inspection: the last write op-
eration to the location gives both the written value and the point in time at
which it was written.

Interactive navigation in large execution traces is challenging: memory-based ap-
proaches allow fast navigation, but do not scale past a few hundred megabytes
of trace data and therefore must discard older data [8,11]. To handle larger
traces without losing information, a disk-based solution is mandatory [13], but
this typically reduces the efficiency of the system. In addition, most back-in-time
debuggers rely on directly capturing exhaustive executions traces [5,8,11,13]. Un-
fortunately, this incurs a significant runtime overhead on the debugged program,
which is problematic for two reasons: (a) it makes the system less practical to
use because of long execution times, and (b) the probe effect can perturb the
execution enough that the behaviors to examine do not occur.

An alternative technique to avoid capturing exhaustive traces that alleviates
the above issues is deterministic replay [1,3,15,16,19]. It consists in capturing
only a minimal trace of non-deterministic events during the initial execution of a
program. The minimal trace can then be deterministically replayed to obtain the
exhaustive trace without affecting the execution of the debugged program. This
is much cheaper than capturing an exhaustive trace, and thus greatly reduces the
probe effect. Non-deterministic events are typically related to external inputs and
system calls. However, another source of non-determinism is thread scheduling,
something that is not properly supported in several deterministic replay systems.

Some deterministic replay systems support restarting the replay in the middle
of the trace through snapshots that capture the state of the program at given
points in time [15,16]. However these snapshots are heavyweight because they
represent the full state of the heap. These snapshots can be produced efficiently
by combining process forks and OS-level copy-on-write mechanisms, but they are

560 G. Pothier and É. Tanter

not easily serializable to disk. Therefore, snapshots remain in memory and older
ones must be discarded, limiting the scalability or precision of the approach.

Contributions. This paper presents a novel scalable disk-based approach that
supports efficient capture and interactive navigation of arbitrarily large execu-
tion traces. This approach relies on dividing the execution trace into bounded-
size execution blocks, about which summary information is efficiently indexed.
Execution blocks themselves are not stored on disk; rather, we support partial
deterministic replay: the ability to quickly start replaying arbitrary execution
blocks as needed. For querying, summarized indexes provide coarse answers at
the level of execution blocks, which are then replayed and scanned to find the
exact answer. More precisely:

– We describe the general approach and its instantiation as a new Java back-
in-time debugging engine called STIQ, for Summarized Trace Indexing and
Querying (Section 2). The approach is based on capturing non-deterministic
events during the execution of the debugged program, followed by an initial
replay phase during which snapshots are taken and indexes are constructed.

– We present an efficient deterministic replay system for Java (Section 3). This
system supports partial deterministic replay through lightweight snapshots
that are both fast to obtain and easy to serialize. We explain how these
lightweight snapshots make it unnecessary to capture the heap.

– We propose indexing techniques for both control flow and memory accesses.
The techniques leverage a recent succinct data structure [14] for efficient
control flow indexing (Section 4), as well as the principle of temporal locality
of memory accesses to reduce the amount of information to index (Section 5).

– We demonstrate through benchmarks that the approach enables a highly
interactive back-in-time debugging experience (Section 6). Specifically, the
proposed technique allows very fast index construction and query processing.
Index construction takes 4 to 25 times the original, non-captured program
execution time on realistic workloads. Query processing requires O(log n)
disk accesses and O(1) CPU time for traces of arbitrary size n, and never
exceeds a few hundred milliseconds in practice. We are not aware of any back-
in-time debugging system that provides either such efficient index building,
or such strong guarantees in query response time.

Finally, Section 7 discusses related work and Section 8 concludes.

2 Summarized Trace Indexing and Querying

Interactive back-in-time debugging requires that queries are processed fast
enough to give the user a feeling of immediacy. For large execution trace, this
mandates the use of indexing techniques: otherwise, arbitrarily large portions
of the trace would have to be linearly scanned for each query. The system de-
scribed in this paper, dubbed STIQ, provides an indexing scheme that is fast to
build and yet processes queries very efficiently. The key insight is to divide the

Summarized Trace Indexing and Querying 561

execution trace into bounded-size execution blocks and to index only summa-
rized information about each block; queries are then processed in two phases:
the indexes first provide a coarse-grained answer at the level of execution blocks
in O(log n) time, and the relevant execution block is then scanned to find the
exact answer in O(1) time (as the size of blocks is bounded).

This section gives an overview of the complete process, whose steps are de-
tailed in subsequent sections, and presents the overall system architecture.

2.1 Process Overview

The STIQ process consists of four phases: trace capture, initial replay, summa-
rized indexing, and querying.

Trace capture. The debugged program is transparently instrumented so that
whenever a non-deterministic operation (such as a system call or a memory
read) is executed, its outcome is recorded into a minimal execution trace
that is stored on disk. The trace is interspersed with regular synchronization
points that give a rough timestamping of events, so that an approximate
ordering of events of different threads can be obtained so as to resolve race
conditions.

Initial replay. Although the minimal trace produced by the capture phase is
sufficient to deterministically replay the debugged program, it is not directly
useful for our indexing process: it contains memory read events, whereas
the memory writes are those that must be indexed. An initial replay is
thus performed to obtain a semi-exhaustive trace consisting of memory write
events and cursory method call information (only the fact that a method is
entered/exited is needed). This is achieved by feeding the minimal trace to
a replayer that re-executes the original program, but with non-deterministic
operations replaced by stubs that read the recorded outcome from the trace.
The program is also instrumented so that it generates the needed semi-
exhaustive trace. Additionally, when a synchronization point is encountered,
a lightweight snapshot is generated so that replay can be restarted from
that point later on. Snapshots thus define the boundaries of individually
replayable execution blocks.

Summarized indexing. The semi-exhaustive trace produced in the initial re-
play is not stored but rather consumed on the fly by an indexer that effi-
ciently builds the indexes. The indexer summarizes the information of each
execution block, as depicted in Figure 1. For method entry and exit events,
the indexer builds a control flow tree and represents it as a Range Min Max
Tree (RMM Tree) [14], a state-of-the-art succinct data structure that allows
very fast navigation operations. Auxiliary structures map the beginning of
execution blocks to positions in the RMM Tree. Together, these structures
allow efficient stepping operations while using only slightly more than one
bit per event. For memory writes, the indexer coalesces all the writes to a
given location that occur within an execution block into a single index entry.
In practice, this reduces the number of entries to index by 95%: because of

562 G. Pothier and É. Tanter

Fig. 1. Summarized indexing process

the principle of temporal locality, if a memory location is accessed at some
point in time, it is very likely that it will be accessed again in the near future,
i.e. in the same execution block. Finally, snapshots are simply stored in an
on-disk dictionary structure.

Querying. The indexes constructed in the previous step can determine the ex-
ecution block that contains the answer to a given query very quickly: they
only require O(log n) disk accesses and O(1) CPU time (with very favor-
able hidden constants—in practice they take 1-10ms). Once the execution
block has been determined, the corresponding snapshot is retrieved (again
in O(log n) disk accesses) and the block is replayed and then scanned to find
the exact event of interest inO(1) CPU time (as the size of execution blocks
is bounded and thus does not depend on the size of the trace). In practice,
queries take a dozen milliseconds on average, and never take more than a
few hundred milliseconds (see Sect. 6).

2.2 System Architecture

Our system uses an out-of-process database to store and index the execution
trace. The overall architecture is depicted below:

It consists of three elements:

1. The debuggee, which is the Java VM that executes the program to debug. It
contains a special native agent that intercepts class loading so that classes

Summarized Trace Indexing and Querying 563

are instrumented prior to execution (either by sending their bytecode to
an out-of-process instrumenter, or by looking them up in a class cache if
they have already been instrumented in a previous session). When executed,
instrumented code emits events that are sent to the debugger core.

2. The debugger core, which consists in (a) an instrumenter that receives the
original classes from the debuggee and inserts the event emission code before
sending the modified classes back to the debuggee, (b) a structure database
that records information about the classes, methods and fields of the de-
bugged program, (c) a trace database that stores and indexes the events
emitted by the debugged program, and (d) a query manager that uses the
database indexes to quickly answer queries.

3. The client, which is the user interface of the debugger. It presents the user
with views over the debugging session and controls to interactively navigate
in the execution trace using back-in-time debugging metaphors: stepping
backward and forward, navigating runtime data dependencies, etc.

3 Trace Capture and Partial Deterministic Replay

This section describes the key features of our deterministic replay system. Many
implementation details are omitted or only glossed over. Section 3.1 describes
how the trace is captured: which events are captured, how we avoid having to
simulate the heap, and how memory locations are identified. It also describes the
scoping abilities of our system. Section 3.2 discusses the replayer, and Section 3.3
details how and when snapshots are taken.

3.1 Capture

Trace capture is achieved by transforming the original program through bytecode
instrumentation so that non-deterministic events are serialized and stored when
the program is executed.

Non-deterministic events. Non-deterministic operations are those whose out-
come can vary from one program execution to another, and thus must be recorded
so as to enable deterministic replay. These operations are:

– Native operations. The outcome of native operations such as disk or network
reads cannot be predicted. In addition, as discussed later in this section, our
system supports user-defined scoping. Out-of-scope methods are considered
non-deterministic.

– Heap memory reads. Thread scheduling can affect the order in which memory
write operations are executed, and as scheduling is outside the control of the
debugged program, the contents of memory is non deterministic.1

1 In the case of Java, only the contents of heap memory is non-deterministic, as the
virtual machine does not allow concurrent access to stack memory.

564 G. Pothier and É. Tanter

Dealing with memory non-determinism. A strategy to deal with the non-
determinism of memory reads due to multi-threading consists in recording the
order in which threads are scheduled, and forcing the same order during re-
play [3]. This is of limited usefulness with multicore architectures, however, as
in this case concurrency occurs at the hardware level. Another strategy, which
we use in our system, consists in recording the value obtained by every memory
read [1].

Avoiding heap simulation. Although capturing memory reads is enough to
allow a fully accurate replay, it still requires to simulate the state of the whole
heap during replay because some control-flow-altering operations (polymorphic
method dispatch and instanceof) rely on the content of the heap, as the type
of objects must be known. The simulated heap would occupy as much memory
as the heap of the original program.

Fortunately, it is possible to completely avoid simulating the heap by recording
the outcome of the above control-flow-altering operations, even though they are
deterministic. This has a very small impact on the trace capture overhead, but
drastically reduces the memory requirements of the system, thus freeing valuable
memory for the indexing process. Moreover, as the heap is not needed anymore
for replay, the only information needed to start replaying at arbitrary execution
block boundaries can be represented in lightweight snapshots that only contain
the values of the local variables of the current stack frame and the identifier of
the current method. Such snapshots are cheap to obtain and take up very little
space.

Identification of memory locations. The reconstitution of program state at
arbitrary points in time requires the indexing of memory locations; it is therefore
necessary to be able to uniquely identify each memory location. Two distinct
types of locations must be considered: heap locations (object fields and array
slots), and stack locations (local variables).

For heap locations, we regard both objects and arrays as structures that con-
tain a fixed number of slots. Structures are assigned a unique id at creation time,
and the id of a particular location within a structure is obtained by adding the
index of the slot to the id of the structure. For objects, the index of the accessed
slot is determined statically (each field of a given class can be assigned an index
statically). For arrays, the index of the accessed slot is explicitly specified at
runtime. To ensure the uniqueness of memory location ids, the sequence that is
used to give a new structure its unique id is incremented by the number of slots
of the structure.

In Java, the ideal way to store the id of structures would be to add a field to
the Object class. However, adding fields to certain core classes such as Object,
String or array classes is problematic in most Java implementations (e.g.doing
so makes the HotSpot JVM crash). To solve this issue, we add the id field to all
non-problematic subclasses of Object, and we use a global weak identity hash
map for the problematic classes; this unfortunately incurs a significant runtime
overhead (as shown in Sect. 6).

Summarized Trace Indexing and Querying 565

For stack locations, we use a compound id consisting of the id of the current
thread, the current call stack depth, and the index of the variable within the
stack frame. This scheme does not uniquely identify each location, because local
variables in subsequent invocations of different methods by the same thread at
the same depth will share the same id. However, this is not a problem because
the temporal boundaries of method invocations are known. We come back to
this issue in Section 5.3.

Scoping. In many cases some parts of the debugged program might be trusted
to be free of bugs (for instance, the JDK classes in the case of Java), or the
bug can be known to manifest only under certain runtime conditions [13]. Trace
scoping reduces the runtime overhead on the debugged program, the size of the
execution trace, and the indexing and querying cost, by limiting the set of events
that are captured. Static scoping consists in limiting capture to a set of classes,
while dynamic scoping consists in activating or deactivating capture dynamically
at runtime. Our system currently supports only static scoping; dynamic scoping
would however be relatively easy to add.

The user configures the static scope by specifying a set of classes or packages
to include or exclude from the trace. We define the set of out-of-scope methods
as all the regular bytecode-based methods that belong to out-of-scope classes,
as well as all native methods.

By definition, the execution of out-of-scope code cannot be replayed. It is
therefore necessary to capture additional information at the runtime boundaries
between in-scope and out-of-scope code. In particular, the return values of out-of-
scope methods called by in-scope methods, as well as the arguments of in-scope
methods called by out-of-scope code must be captured.

Unfortunately, because of polymorphism it is not possible to statically deter-
mine whether a particular call site will result in the execution of an in-scope or
of an out-of-scope method; similarly, it is not possible to determine if a given
method will be called by in-scope or out-of-scope code. Therefore, in the trace
capture phase we instrument the envelope (ie. entry and exit) of all out-of-scope
methods in order to maintain a thread-local scope stack of booleans that indi-
cates whether the thread is currently executing in-scope or out-of-scope code.
Whenever the execution of an in-scope method starts, the top of the stack is
checked to decide if method arguments must be captured; similarly, whenever
an out-of-scope method exits, the top of the stack is checked to decide if the
return value should be captured.

3.2 Initial Replay

The main task of the replayer is to inject the recorded outcomes of non-
deterministic operations into the replayed program. To that end, we transform
the program through bytecode instrumentation so that non-deterministic oper-
ations are replaced by proxies that read their outcome from the trace.

As explained above, the heap is never explicitly reconstituted; therefore, the
replayer never needs to instantiate any class of the original program: instances

566 G. Pothier and É. Tanter

are instead represented by a generic ObjectId class that is simply a container for
the identifier of the object2. All the non-static in-scope methods of the program
are replaced by static ones that take an additional ObjectId parameter that
represents the target of the method.

On the other hand, as out-of-scope methods do not record any information in
the trace (except the envelope as explained above), they all behave exactly in the
same way as far the replayer is concerned: a black box that consumes parameters
and generates a return value. Therefore the original out-of-scope methods are
not used at all in the replayer, and are collectively replaced by a single, generic
method provided by the replayer infrastructure.

3.3 Snapshots

Snapshots define the boundaries of execution blocks. Recall that snapshots are
taken during the initial complete replay of the program, and not during capture,
so as to reduce the runtime overhead of capture as much as possible. We now
describe how and when snapshots are taken.

Snapshot probes. The ability to take a snapshot at a given program point
requires the insertion of a piece of code, called a snapshot probe, that performs
the following tasks:

1. Check if a snapshot is actually requested at this moment, by reading a
thread-local flag (detailed below).

2. Store the necessary information in the snapshot: identification of the snap-
shot probe, current position in the minimal execution trace, and the values
of local variables and operand stack slots.

Recalling that the heap is not reconstituted during replay, the information men-
tioned above is sufficient for replaying the current method and all the meth-
ods called from there, recursively. It is not sufficient, however, to return to the
caller of the current method: the stack frame of the caller is not recorded in the
snapshot. This problem is addressed by always inserting snapshot probes after
method calls, and forcing the creation of a snapshot at those probes if a snap-
shot was taken during the execution of the method. Thus, although the partial
replay cannot directly continue after the current method returns, there is always
another snapshot at the right point in the caller method so that another partial
replay can be started right where the previous one finished.

Snapshot intervals. The size of execution blocks must be chosen considering
a tradeoff between indexing efficiency and querying efficiency:

– Larger blocks make it possible to coalesce more object accesses into one index
entry, thus increasing indexing throughput.

– Shorter blocks can be replayed faster and thus queries can be answered faster.
2 We use a container instead of a scalar because the actual value of the id is mutable

in the case of instantiations, but this is beyond the scope of this paper.

Summarized Trace Indexing and Querying 567

It is important to take into account the involved magnitudes:

– Indexing is performed on the fly during the initial complete replay, and pre-
emptively considers all of the objects that exist during the execution of the
program: all object accesses in the trace incur an indexing cost. Therefore,
small variations in indexing throughput can noticeably affect the global ef-
ficiency of the system.

– Queries deal with individual objects and are performed by a human being,
who cannot differentiate between a one microsecond or a one millisecond
response time. Therefore, important variations in querying efficiency can go
largely unnoticed up to a certain point.

The time interval between snapshots define the maximum size of execution
blocks3. This interval is configurable by the user, controlling the tradeoff be-
tween indexing efficiency and query response time.

Probe density. Probes should be inserted densely enough in the program so
that a snapshot can be taken quickly once it is requested. However, snapshot
probes are costly both in code size and in speed (because of the runtime check)
so it is preferable to limit their number. As we must insert snapshot probes after
every method call anyway (as explained above), the density is usually already
sufficient with just those probes. Nevertheless, it is possible for the program to
contain a loop with no method calls at all, like a complex calculation on a large
array; in this case, an additional probe would be needed inside the loop. For
the sake of simplicity, and because this kind of program is rather infrequent, we
currently do not insert these additional probes.

4 Indexing of Control Flow

We now turn to the indexing techniques. This section describes the indexing of
control flow, and Section 5 describes the indexing of memory accesses. While
step into queries simply consist in moving to the next/previous event in the
execution trace, efficiently executing step over and step out queries requires an
index: otherwise it would be necessary to linearly scan the execution trace to
skip the events that occurred within the control flow of the stepped over call, or
between the current event and the beginning of the current method.

The control flow can be represented as a tree whose nodes correspond to
method calls. Stepping operations then simply correspond to moving from a
node to its next/previous sibling (for step over), or to its parent (for step out).
We store the control flow tree using a Range Min-Max Tree (RMM Tree) [14],
a recent succinct data structure that is disk-friendly, fast to build and supports
fast navigation operations. Auxiliary data structures maintain a correspondence
between execution blocks and their initial node in the control flow tree so that
3 We also set a minimum size for execution blocks, so that a thread that spends most

of its time sleeping does not generate plenty of useless snapshots.

568 G. Pothier and É. Tanter

Fig. 2. A tree and its balanced parentheses representation

the block corresponding to a given node can be determined during queries. This
approach uses only slightly more than 1 bit per method call or return event,
while requiring only a few milliseconds to answer arbitrary stepping queries,
making them seem instantaneous to the user.

This section first briefly describes the RMM Tree structure and then explains
our control flow indexing and querying mechanism.

4.1 Range Min-Max Tree

A succinct data structure is one that stores objects using space close to the
information-theoretic lower bound, and at the same time supports fast queries
on the stored objects. In the case of a tree4 with n nodes, the lower bound is
2n − Θ(log n) bits [14]. A classical way to represent trees using 2n bits is the
balanced parentheses sequence (see Figure 2): each node is represented by a pair
of matched parentheses that enclose the representation of its children. A node
in the tree is identified by the position of the corresponding opening (or closing)
parenthesis.

Although such a structure is compact (as only one bit is needed for each
parenthesis), it does not allow per se to quickly answer queries like finding the
next sibling, previous sibling or parent of a given node. The RMM Tree [14] adds
an indexing layer on top of the balanced parentheses representation that incurs
very little space overhead while allowing extremely fast querying. In theory, the
RMM Tree supports queries in constant time O(c2) with a data structure using
2n+O(n/ logc n) bits, for any constant c > 0. In practice, we trade the constant
time for logarithmic time with a very big base.

The essential idea of the RMM Tree is to compute a running sum of the bits
that represent the parentheses sequence: opening parentheses increment the sum
by 1, and closing parentheses decrement the sum by 1. For each fixed-size block
of parentheses, a summary indicating the minimum and maximum value that the
sum takes within the block is stored separately. Fixed-size blocks of summaries
are then recursively summarized (the minimum and maximum of a whole block
of summaries are separately stored at a higher level). This results in a tree
structure of height H in which the leaves are the bits that represent the balanced
parentheses sequence, and the nodes contain the minimum and maximum value
of the running sum in their subtree. Subtle observations about the relationship
between the running sum and the primitive tree navigation operations make it
possible to guarantee that queries can be answered by accessing at most 2H
blocks (going up to the root and then down to the correct leaf) [14].

4 Specifically, ordinal trees, where a node can have any number of ordered children.

Summarized Trace Indexing and Querying 569

Algorithm 1. Find return event.
Finds the return event corresponding to the call event denoted by (t, b, i).
1: function FindReturn(t, b, i)
2: tree← getCFlowTree(t)
3: pcall ← eventToPosition(t, b, i)
4: pret ← tree.getClose(pcall)
5: (tret, bret, iret)← positionToEvent(t, pret)
6: return (t, bret, iret) � By construction t = tret

7: end function

Algorithm 2. Event to position.
Returns the RMM Tree position corresponding to the given event reference.
1: function EventToPosition(t, b, i)
2: (tree, map)← getCFlowIndex(t)
3: p← map.getPos(b)
4: block← getBlock(t, b)
5: for k in 1, i do
6: if block[k] is a call or return event then
7: p← p + 1
8: end if
9: end for
10: return p
11: end function

In practice, blocks correspond to disk pages (usually 4KB). The summary
information to store for each block (minimum and maximum values plus some
ancillary data) occupies only 10 bytes. As a consequence the tree is quite flat:
for instance, an RMM Tree of height 4 can store up to

⌊
4096
10

⌋3 · 4096 · 8 �
2 · 1012 bits in its leaves and occupies around 4096 ·∑3

i=0

⌊
4096
10

⌋i � 280GB, thus
requiring roughly 2.005 bits per original tree node (slightly more than 1 bit per
parenthesis).

4.2 Indexing and Querying

The indexing process for control flow is straightforward: each execution thread
has its own RMM Tree that stores all the method call (resp. return) events as
one opening (resp. closing) parenthesis as they occur. Also, execution blocks
are identified by a thread-local block id, equal to the timestamp of the initial
snapshot of the block. Blocks ids are unique within a thread, but not globally.
Whenever a new execution block starts, a pair (block id, current RMM position)
is stored in a bidirectional map, which makes it possible to either retrieve the
block id given a RMM position, or the RMM position given a block id. More
precisely, this bidirectional map consists of two BTrees, one where the block ids
are the keys and the RMM positions are the values, and another one with the
opposite relationship. As BTrees use binary search for keys, the keys used for
lookup do not need to be exact values. We take advantage of this feature when
looking up a block id given a position: there is usually no record for the exact
position, but we can instead return the id of the block that contains this position.

570 G. Pothier and É. Tanter

Algorithm 3. Position to event.
Returns the event reference corresponding to the given RMM Tree position.
1: function PositionToEvent(t,p)
2: (tree, map)← getCFlowIndex(t)
3: b← map.getBlockId(p)
4: p0 ← map.getPos(b) � p0 is the position of the RMMTree corresponding to the beginning

of block b
5: block← getBlock(t, b)
6: i← 1
7: while p0 < p do
8: if block[i] is call or return event then
9: p0 ← p0 + 1
10: end if
11: i← i + 1
12: end while
13: return (t, b, i)
14: end function

To perform a step over operation5, it is necessary to determine the return
event corresponding to the call event that is being stepped over. The result
of the step over operation is simply the event following the return event. The
findReturn function (Algorithm 1) is thus the basis of the step over operation.

Events are identified by a (t, b, i) tuple where t is the thread id, b is the block
id, and i is the index of the event within the block. The algorithm consists of
three steps: (a) determining the position of the bit (or opening parenthesis) of
the RMM Tree that corresponds to the given method call event, (b) determin-
ing the corresponding closing parenthesis, that corresponds to the return event,
and finally (c) translating the RMM Tree position back to an event reference.
Translating back and forth between event references and RMM Tree positions is
implemented in the subroutines specified in Algorithms 2 and 3.

The algorithms use the following auxiliary procedures:

– getBlock(t, b) replays block b of thread t and returns the exhaustive list of
events for that block.

– getCF lowIndex(t) returns the RMM Tree and bidirectional map corre-
sponding to thread t; getCF lowTree(t) returns only the RMM Tree. These
are constant-time operations.

There are three components to the cost of the algorithm:

– The replaying of the initial and final execution blocks (although the initial
execution block is usually available in a cache, as it corresponds to the events
the user was currently observing). These operations take a time proportional
to the size of the blocks, which is a constant that can be tuned by the user.

– The obtention of block ids and positions through the bidirectional map.6
These operations are BTree lookups that require O(log n) disk accesses.

– The navigation to the closing parenthesis in the RMM Tree. This operation
also requires O(log n) disk accesses.

5 We describe forward step over; backward step over and step out are similar.
6 In Algorithm 3, lines 3 and 4 are actually a single operation, as the binary search for

the given position gives both the registered position and the corresponding block id.

Summarized Trace Indexing and Querying 571

In practice, arbitrary stepping queries only take a dozen milliseconds on average,
and never take more than a few hundred milliseconds, allowing highly interactive
stepping (see Sect. 6).

5 Indexing of Memory Accesses

Two of the essential features of back-in-time debuggers are the ability to inspect
the state of memory locations at any point in time, and the ability to instantly
navigate to the event that assigned its value to a location. Both features rely on
the same basic query: finding the last write to the location that occurred before
a reference event (the point of observation). The write event indicates both the
value that was written and the moment it was written7.

The key to being able to answer such queries efficiently is to have a separate
index for each memory location; if a single index is shared between several loca-
tions, a linear scan of the index (which can take a time proportional to the size
of the trace) is necessary. This said, constructing an exhaustive index of all write
accesses for each location is prohibitively costly [13]. Instead, we index only a
summary of the write accesses: we coalesce all accesses to a given location that
occur within an execution block to a single index entry. We thereby exploit the
principle of temporal locality: if a given location is accessed at a point in time it
is very likely to be accessed again in the near future, i.e. in the same execution
block. In practice, this approach allows us to discard around 95% of memory
accesses. This compression ratio, along with the pipelined index construction
process described later, makes it possible to maintain a separate index for each
memory location.

To answer queries, the index is used to determine, in logarithmic time, the
execution block that contains the access of interest; the block is then replayed
and linearly scanned to retrieve the exact event. As block size is bounded, this
linear scan does not depend on the size of the trace, and is very fast in practice,
as will be shown in Sect. 6.

In the following we first present the general structure of the index and the
way it is queried, before explaining how to build it efficiently using a multicore-
friendly pipelined process. This section deals mostly with heap memory locations
(object fields and array slots). The capture system assigns a unique identifier to
each heap location, as explained in Sect. 3.1. We explain how stack locations
(local variables) are handled in Sect. 5.3.

5.1 Index Structure and Querying

Memory inspection queries consist in finding the last write to a given location
that occurred before a certain reference event. As explained above, there is one
7 Although to simplify the presentation we consider a single result for memory in-

spection queries, there is actually a set of write events that might have written the
current value of the location at the time the reference event occurred. The reason
the query produces a set and not a single event is that the resolution of data races
is limited by the accuracy of the timestamping of events.

572 G. Pothier and É. Tanter

Algorithm 4. Memory location reconstitution.
1: function GetLastWrite(loc, (t, b, i))
2: index← getLocationIndex(loc)
3: (b2, threads)← index.getAtOrBefore(b)
4: for t2 in threads do
5: block← getBlock(t2, b2)
6: if b2 = b and t2 = t then
7: limit ← i− 1
8: else
9: limit ← length(block)
10: end if
11: for k in limit, 1 do
12: if block[k] is write to loc then
13: yield (t2, b2, k)
14: break
15: end if
16: end for
17: end for
18: end function

individual index for each memory location. As there are many such location
indexes, there is also a master index used to retrieve particular location indexes.

The process of answering a query is sketched in Algorithm 4. It consists of
three main steps:

1. Retrieve the index for the particular location using the master index (line 2).
This is implemented as a BTree lookup, and thus requires O(log n) disk
accesses.

2. Within the location index, search the execution block(s) that occurred at
the same time or just before the block b, which contains the reference event
(line 3). This search can produce as many blocks as there are threads writing
to the location in the same time span as block b. As we explain later, there are
different implementation of the location indexes, according to the number of
entries in the index, but in the worst case the search requires O(log n) disk
accesses.

3. Replay the blocks of the previous step to find the last write(s) to the in-
spected location. Although there can be any number of blocks to replay,
the size of blocks decreases with the number of concurrent threads. This
is because blocks are delimited by elapsed time (see Sect. 3.3): the more
threads execute concurrently at a given time, the less events there are in the
corresponding blocks.8 The time required to replay those blocks is therefore
bounded and does not depend on the size of the trace.

As shown in Sect. 6, such queries in practice only take two dozen milliseconds
on average, and never more than a few hundred milliseconds, allowing very fast
reconstitution of memory locations.

5.2 Pipelined Index Construction

The previous section showed that it is possible to query the memory locations
index in logarithmic time. We now show that the index can also be efficiently
8 Modulo the number of available CPU cores, but this is also a constant.

Summarized Trace Indexing and Querying 573

built. As explained in Sect. 2, an initial replay of the minimal trace is performed
so as to obtain a semi-exhaustive execution trace that contains memory writes
events. The semi-exhaustive trace is consumed on the fly by the indexer.

The indexing process is divided into 5 pipelined stages (see Fig. 3), and can
thus take advantage of multicore systems, as the different stages can run in par-
allel (although the CPU utilization is not evenly distributed between all stages).
The first three stages operate in main memory, while the latter two deal with
storing data on disk. By conveniently ordering the data, the first stages help
reduce the amount of disk seeks needed at the later stages.

Summarizing. This stage (Fig. 3a) is instantiated for each thread of the debugged
program. It scans incoming execution blocks, and for each memory write, it adds
the identifier of the written location to a hash set. Using a set is key to our
indexing approach, ensuring that each written location appears only once per
execution block. Once an execution block is finished, the set is transformed into
a (t, b, a) tuple where t and b are the thread and block id, and a is a sorted array
of the location identifiers that have been written to within the block. The tuple
is then passed on to the next stage.

Because execution blocks are relatively small in practice, all the operation of
this stage can be performed in memory.

Reordering. During trace capture, events are stored in thread-local buffers before
being stored in the minimal trace. Busy threads emit many events, so they
quickly fill their event buffers, while threads that spend a lot of time waiting
might take a long time to fill a single buffer. It is therefore possible that execution
blocks of different threads are stored in the trace out of order. The later stages
of the pipeline can cope with this situation, but at the cost of a significant loss of
throughput. The goal of the reordering stage (Fig. 3b) is thus to avoid as much
as possible the costly reordering by downstream stages.

Fig. 3. The five stages of the indexing pipeline

574 G. Pothier and É. Tanter

This stage accumulates the tuples in a buffer, and when their total size exceeds
a certain threshold (32 MB in practice), they are sorted by block id, and the
oldest ones (the oldest 60% in practice) are passed on to the next stage in a
bundle for processing. The remaining ones stay in the buffer and will be sorted
again, along with newer ones and possible late comers, in the next round. The
aforementioned threshold size is chosen to be small enough so that the data sets
of this stage and the following one can fit in main memory, but large enough to
impede most out-of-order blocks from going through.

Inversion. This stage (Fig. 3c) receives bundles of (t, b, a) tuples and operates
in two phases:

1. Each (t, b, a) tuple is expanded into a list of (t, b, l) tuples, one for each
memory location l ∈ a. The threshold size chosen in the previous stage has
to be small enough that the expanded tuples of this stage can fit in main
memory.

2. The concatenated list of all the (t, b, l) tuples is then sorted by location id l,
then by block id b and finally by thread id t.

As a consequence of the sorting, the tuples produced in this stage are grouped
by location, which reduces the amount of disk seeks needed to build the on-disk
index in the following stages. Additionally, having the tuples within each group
sorted by block id and thread id enables the use of compact encodings, thus
reducing the size of the indexes, as explained below.

Allocation. For each location group in the tuple list produced by the previous
stage, an entry is allocated in the master index (or retrieved, if it already existed).
An entry is simply a pointer that references the page where the individual index
corresponding to the location is stored. The tuple list of the previous stage is
passed on to the next stage, along with a list of allocated entries, so that the
next stage can perform the actual storage of the tuples of each group without
having to access the master index anymore.

Storage. This final stage performs the actual storage of (t, b) tuples in the in-
dividual indexes corresponding to each location l. According to the number of
tuples to store in each index, three different index formats are used:

– Because most objects are short lived and therefore are accessed in only one
execution block, most indexes (around 80%) contain a single tuple. We store
these indexes in shared pages, which we call singles pages. Thanks to the
ordering performed in the previous stage and the use of gamma codes9 to
store the difference between successive tuple components, a 4KB singles page
contains around 800 indexes on average.

9 Gamma codes [4] represent an integers x in (roughly) 2 log2 x bits. Small numbers
are thus encoded in very few bits.

Summarized Trace Indexing and Querying 575

– For indexes that contain more than one tuple but less than the number of
tuples that can fit in half a disk page, we use another type of shared pages,
which we call n-shared pages, with n ∈ {2m} for m ∈ [1..7]. In these pages,
space is evenly distributed between n indexes.

– For bigger indexes, we use BTrees where keys are block ids and values are
thread ids. Again, we use gamma codes to store the tuples in these trees.

As indexes are built on the fly, we do not know beforehand what the size of
each index will be. Indexes thus migrate from singles page to n-shared pages to
BTrees as more tuples are added.

5.3 Local Variables

Having a separate index for each memory location implies that each location
can be uniquely identified. As explained in Section 3.1, our trace capture system
assigns a unique id to each each heap location (object fields and array items),
but this uniqueness constraint is relaxed for stack locations (local variables).
Stack locations are assigned a compound id that is made of the thread id, the
local variable index, and the call stack depth. This entails that there cannot be a
separate index for each stack location, as the stack frames of subsequent method
executions at the same level will share some local variable indexes. However,
queries can still be processed efficiently: we already know the temporal bound-
aries during which particular stack locations exist (these boundaries are defined
by method entry and exit, which are indexed). To process a stack location in-
spection query, we query the corresponding index as if it was not shared. If the
answer is outside the temporal boundaries of the current method invocation, it
means there is no write to the variable before the reference event.

6 Benchmarks

In this section we present the experimental results we obtained with our STIQ
system, and we compare them with those obtained with TOD [12,13], our previ-
ous disk-based back-in-time debugger for Java, which to the best of our knowl-
edge still represents the state of the art up to now. (We compare to other re-
lated systems in Section 7.) All the benchmarks were performed on a Quad-core
2.40GHz Xeon X3220 machine with 4GB RAM and two 160GB SCSI hard drives
in a RAID-0 configuration, running the x86_64 Linux 2.6.24 kernel. We used
the Sun HotSpot 1.6.0_22 32 bits JVM in server mode for both the debuggee
program and the indexing server.

We used the avrora and lusearch benchmarks of the DaCapo v9.12 benchmark
suite [2], as well as a toy benchmark called burntest that stresses STIQ capture
and indexing by performing almost only method calls and field accesses (it con-
sists in repeatedly navigating a large in-memory tree). For DaCapo benchmarks,
we use the small dataset size, and force two driver threads. For both STIQ and
TOD, the JDK classes were configured to be out of scope.

576 G. Pothier and É. Tanter

We first present global results (capture overhead, indexing speed and query ef-
ficiency) that show the competitiveness of our approach. We then give a detailed
accounting of the time and space resources needed for individual features.

6.1 Global Results

Table 1 shows the impact of trace capture on the debugged program. It varies
between 10x and 30x for STIQ and between 22x and 176x for TOD10. The
overhead of STIQ is much lower than that of TOD, as well as that of other
back-in-time debuggers: the Omniscient Debugger [8] has an overhead of around
120x, while Chronicle (discussed in Sect. 7) reports a 300x overhead. Also, STIQ
has an overhead comparable with other deterministic replay systems like Nir-
vana [1], which reports a 5x-17x overhead. Nirvana however is only concerned
about deterministic replay, not trace indexing.

Table 1. Runtime overhead of trace capture

Workload t0
STIQ TOD

tSTIQ oSTIQ tTOD oTOD

avrora 5.5s 163s 30x 968s 176x
lusearch 7s 69s 10x 157s 22x
burntest 5.2s 65s 12x 427s 82x

t0: original execution time without trace capture
tT OD , tSTIQ: execution time with trace capture

ox: runtime overhead (tx/t0)

With respect to trace capture, even though the numbers are comparatively
favorable to STIQ, the capture overhead still remains high; further effort is
necessary in this regard.

Table 2. Replay and indexing time (and ratio to original execution time)

Workload STIQ TOD
replay indexing total

avrora 95s (17x) 46s (8.4x) 141s (25x) 152min (1664x)
lusearch 19s (2.7x) 13s (1.8x) 32s (4.5x) 16min (138x)
burntest 39s (7.5x) 375s (72x) 414s (80x) 52min (606x)

Table 2 indicates the time needed to index the captured traces. For the Da-
Capo benchmarks, STIQ actually uses less time to perform the initial replay and
build the indexes than to capture the trace. For burntest on the other hand, the
10 This shows that the published worst-case runtime overhead of 80x for TOD [13] was

not actually the worst case.

Summarized Trace Indexing and Querying 577

Table 3. Space usage

Workload STIQ TOD
trace index trace index

avrora 5GB 0.27GB 35GB 65GB
lusearch 1.1GB 0.16GB 6.2GB 11.3GB
burntest 1.5GB 2.7GB 20GB 39.4GB

Table 4. Average (and maximum) query response time

Workload STIQ TOD
stepping memory stepping memory

avrora <1ms (0.24s) 19ms (0.5s) 12ms (6.8s) 41s (96min)
lusearch <1ms (0.37s) 27ms (0.48s) 5.2ms (1.6s) 1.9s (4min)
burntest 6.9ms (0.65s) 8.6ms (0.17s) 17ms (0.74s) 3.4s (17min)

indexing is very slow, as that workload consists only in method calls and field
accesses, with no extra deterministic computation in between. STIQ is (at least)
one order of magnitude faster than TOD to build the indexes.

Table 3 shows the size of the captured execution traces, as well as the size of
the created indexes. STIQ traces are much smaller than those of TOD, showing
the benefit of using a deterministic replay system versus exhaustive trace capture.
It is notable that for the DaCapo benchmarks, STIQ produces indexes that are
much smaller than the trace itself; for burntest the index is almost twice as big
as the trace, again because burntest is all about method calls and field accesses,
which are the two kinds of events that are indexed. Also worthwhile to note is
the fact that TOD indexes are always bigger than the already bulky traces.

Table 4 shows the query response time of STIQ and TOD. For stepping
queries, we divide each thread of the execution trace into 100 equal intervals
and starting at the beginning of each interval we alternately perform step over
and step out operations until the root of the control flow is reached. As we get
closer to the control flow root, step over operations must skip a greater number
of events. For memory inspection queries, we first realize a (non-timed) pass that
collects the locations to inspect: we divide each thread into 20 equal intervals
and start scanning the trace at the beginning of each interval, collecting accessed
locations until 20 distinct locations are found. After the collection phase, we once
again divide each thread into 20 equal interval and inspect the content of each
location at the beginning of each interval.

The experimental results clearly show the benefit of our approach. STIQ
queries are guaranteed to take O(log n) disk accesses and O(1) CPU time; in
practice they never reach the one second mark, and take only a dozen millisec-
onds on average. In contrast, some TOD queries can take an extremely long
time, completely ruining the interactivity of the debugging session11.

11 Note that the average query times for TOD are high in great part because of a few
extremely long outliers; many queries still execute in a few dozen milliseconds.

578 G. Pothier and É. Tanter

Table 5. Cost of capture features as percentage of total capture time

Workload object ids map field reads
avrora 9.5% 66%

lusearch 17% 53%
burntest 41% 47%

Table 6. Size of the different indexes as percentage of total index size

Workload control flow memory locs snapshots strings
avrora 56% 28% 14% 0.6%

lusearch 14% 71% 11% 4%
burntest 1.3% 97% 0.8% 0.7%

Overall, we consider our approach successful. Capture overhead, indexing
times and trace sizes are all significantly better than TOD. In addition, STIQ
really shines at query processing, always guaranteeing interactive-compatible re-
sponse times. We are not aware of any system that gives such strong guarantees
on query process times.

6.2 Cost of Individual Features

This section gives a detailed accounting of the cost of the different features of STIQ
for both capture and indexing. This is useful to pinpoint optimization targets.

Table 5 shows the cost of two important features used at capture time. As
mentioned in Sect. 3.1, we must resort to a global map to store the ids of the
instances of certain problematic classes. This has a non-negligible cost, that could
be avoided if the JVM was modified to allow additional fields to be added to
the Object class. The non-determinism of memory caused by thread scheduling
requires the capture of the values of each memory read. This represents about
half the capture time.

Table 6 show how the index size is distributed among the different indexes12.
The distribution varies widely from a workload to another, but it is worthwhile
to note that our lightweight snapshots use comparatively very little space.

7 Related Work

We now discuss related work in the areas of back-in-time debugging, determin-
istic replay, and analysis of captured execution traces.

Back-in-time debugging. TOD [12,13] is our previous attempt at a scal-
able disk-based back-in-time debugger for Java. It uses a specialized distributed
12 The strings index stores the values of the strings used in the program. As it is not

directly used for queries and has very limited impact in general, we did not mention
it elsewhere in this paper.

Summarized Trace Indexing and Querying 579

database to speed up indexing and querying. It is based on exhaustive trace cap-
ture and exhaustive indexing of events. As a consequence, its runtime overhead
is higher than STIQ (up to 176x vs. up to 30x), and it is very resource hungry
(traces are up to 13x larger than STIQ, and indexes up to 177x larger). More-
over, many queries in TOD involve a conjunction on several indexes, requiring
a linear scan that can take a long time in some cases (more than a minute). In
contrast, our system guarantees O(log n) disk accesses and O(1) CPU time for
all queries, in practice not exceeding a few hundred milliseconds.

Amber/Chronicle13 by Robert O’Callahan is a back-in-time debugger for na-
tive Linux programs that is designed to deal with large execution traces. As
TOD, it relies on exhaustive trace capture, and it creates an on-disk index of
the execution trace. It performs compression of both trace and index data. It
is interesting to note that for indexing memory accesses it uses the principle of
spatial locality: contiguous instructions that access contiguous memory locations
produce a single event. However it does not create an individual index for each
memory location, and thus suffers from the same limitation as TOD: it is possi-
ble that a large number of entries have to be scanned before finding the correct
one. The runtime overhead of trace capture (300x) is also much higher that what
we achieve with STIQ.

The Omniscient Debugger [8] and Unstuck [5] are tools for Java and Smalltalk
respectively that store the execution trace in RAM, in the same process as the
debugged program. Because the amount of available storage is limited, they
resort to discarding the oldest events to make room for the new ones. Lienhard et
al. [11] discard the events that relate to objects that have been garbage collected.
In both cases, discarding events can limit the usefulness of the approach, as bugs
can have occurred much before the symptoms appear, or in the context of objects
that are no longer in use.

The Whyline [6] is a debugging system for Java that provides richer queries
than most back-in-time debuggers: it lets the user select questions about why
some behavior did or did not occur. These questions are automatically generated
based on a combination of static and dynamic analysis, and can deal not only
with the internal state of the program (memory locations, control flow), but also
with its textual and graphical output, down to individual pixels. Although the
Whyline can analyze relatively large execution traces (e.g. 35 million events),
its scalability is limited by the fact that the analysis is performed in memory.
ZStep [9] is an early back-in-time debugger for Lisp that does not claim great
scalability, but instead explores the user interaction aspect of back-in-time de-
bugging. It can also relate graphical output to the event that produced it.

Deterministic replay. Flashback [16] and Jockey [15] are deterministic replay
systems for native Linux programs. Flashback relies on a modified kernel while

13 Although there are no formal publications about this open-source tool, Am-
ber/Chronicle is a serious endeavor that has been successfully used to debug the
Firefox web browser. Information can be found on this page: http://weblogs.
mozillazine.org/roc/archives/2006/12/more_about_ambe.html.

http://weblogs.mozillazine.org/roc/archives/2006/12/more_about_ambe.html
http://weblogs.mozillazine.org/roc/archives/2006/12/more_about_ambe.html

580 G. Pothier and É. Tanter

Jockey relies on program instrumentation. They both take periodic snapshots
of the state of the debugged process and record the interactions between the
program and its environment. Snapshots are based on a fork of the process and
take advantage of the copy-on-write mechanism of the kernel to avoid having to
explicitly copy the entire address space. However, the fact that snapshots have
to stay in memory make it necessary to discard older ones. Both systems have a
runtime overhead lower than ours (2x-4x for Flashback, up to 30% for Jockey),
but they do not properly handle multithreaded programs. Nirvana [1] is a deter-
ministic replay system for native programs that properly supports multithreaded
programs. Like our own system, it records the results of memory reads to ac-
count for scheduling-induced non determinism. Its runtime overhead is between
5x and 17x, which is slightly better than what we achieve with STIQ.

DejaVu [3] is a deterministic replay system for Java based on modifications of
the JVM. It supports multithreaded programs and has a rather low runtime over-
head (usually less than 100%), but the JVM used does not have a JIT compiler
and thus only runs in interpreted mode, which has very different performance
characteristics compared to production JVMs.

Retrace [19] is a deterministic replay system for uniprocessor VMWare virtual
machines. It has an extremely low runtime overhead (around 5%) and produces
very compact traces. Such a low runtime overhead is possible because the recorded
system is the entire (virtual) machine, and therefore the amount of interaction
with the environment is limited to mostly IO operations; in particular, thread
scheduling and the associated non-determinism on memory locations need not be
captured, as the scheduling itself is a deterministic part of the recorded system.

Capture and analysis of execution traces. Capture of execution trace for
automatic offline analysis is a well studied topic. Zhang et al. [20] present several
lossless compression techniques used to record whole execution traces of native
programs. These compression algorithms support direct navigation in the com-
pressed traces. Tallam et al. [17] show that it is possible to extend control flow
traces to indirectly capture runtime data dependencies. Xin et al. [18] present a
technique to efficiently capture control flow at a level of granularity finer than
procedure calls, and provide a numbering scheme of executed statements useful
to correlate several executions of the same program. Using the above techniques,
relatively complex queries (e.g. calculating dynamic slices or matching instruc-
tion flows in different versions of the same program) can be executed in seconds
or minutes instead of the hours or days it would take using a naive approach. In
contrast, with our system, simple queries specific to the typical tasks of back-in-
time debugging can be executed in at most a few hundred milliseconds instead
of the seconds or minutes it would take without indexing.

8 Conclusion

This paper presented STIQ, a scalable back-in-time debugging approach based
on summarized execution trace indexing and querying that favorably compares

Summarized Trace Indexing and Querying 581

with previous approaches on three essential levels: trace capture overhead, in-
dexing speed and query response time. In particular, it leverages deterministic
replay for a lower runtime overhead, and indexes only summarized information
about bounded-size execution blocks for fast indexing and querying. Importantly,
it guarantees that all queries only require O(log n) disk accesses and O(1) CPU
time; in practice they never reach the one second mark, and take only a dozen
milliseconds on average. Such efficient querying is key to providing an interactive
debugging experience; we are not aware of any back-in-time debugging system
that provides such strong guarantees.

In this paper we only presented the core queries of back-in-time debuggers
(stepping, memory inspection and causality links). However our indexing scheme
could easily support other useful queries, such as finding the events that occur on
a particular source code line, or the history of objects beyond the history of their
individual fields (e.g. when objects are passed around as method arguments).

An interesting property of our approach is that the indexing and querying
scheme is independent from the technique used for trace capture and replay. The
only requirement is that it must be able to obtain (a) memory write and method
entry/exit events for index construction (in this paper these are obtained through
an initial replay that generates a semi-exhaustive trace), and (b) exhaustive
event lists of arbitrary execution blocks for processing queries (in this paper this
is achieved by taking lightweight snapshots that permit to replay such blocks).
Although this work provides both the capture and the indexing mechanism,
we feel that the capture is still too slow to be really practical. It is our hope
that this work will encourage the building of improved capture mechanisms that
can be plugged into our indexing system so as to obtain a practical back-in-
time debugger. It would be particularly interesting to assess how an extremely
efficient capture system such as Retrace [19] could be used for this purpose.

References

1. Bhansali, S., Chen, W.-K., de Jong, S., Edwards, A., Murray, R., Drinić, M., Mi-
hočka, D., Chau, J.: Framework for instruction-level tracing and analysis of pro-
gram executions. In: VEE 2006: Proceedings of the second international conference
on Virtual execution environments, pp. 154–163. ACM Press, New York (2006)

2. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: OOPSLA 2006: Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-Oriented Programing, Systems, Languages, and
Applications, pp. 169–190. ACM Press, New York (2006)

3. Choi, J.-D., Srinivasan, H.: Deterministic replay of Java multithreaded applica-
tions. In: SPDT 1998: Proceedings of the SIGMETRICS Symposium on Parallel
and Distributed Tools, pp. 48–59. ACM Press, New York (1988)

4. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans-
actions on Information Theory 21(2), 194–203 (1975)

582 G. Pothier and É. Tanter

5. Hofer, C., Denker, M., Ducasse, S.: Design and implementation of a backward-
in-time debugger. In: Proceedings of NODE 2006. Lecture Notes in Informatics,
vol. P-88, pp. 17–32. Gesellschaft für Informatik, GI (2006)

6. Ko, A.J., Myers, B.A.: Debugging reinvented: Asking and answering why and why
not questions about program behavior. In: ICSE 2008: Proceedings of the Interna-
tional Conference on Software Engineering, pp. 301–310 (2008)

7. Larus, J.R.: Whole program paths. In: PLDI 1999: Proceedings of the ACM SIG-
PLAN 1999 Conference on Programming Language Design and Implementation,
pp. 259–269. ACM Press, New York (1999)

8. Lewis, B.: Debugging backwards in time. In: Ronsse, M., De Bosschere, K.
(eds.) Proceedings of the Fifth International Workshop on Automated Debugging
(AADEBUG 2003), Ghent, Belgium, vol. cs.SE/0310016 (2003)

9. Lieberman, H., Fry, C.: ZStep 95: A reversible, animated source code stepper. In:
Stasko, J., Domingue, J., Brown, M.H., Price, B.A. (eds.) Software Visualization
— Programming as a Multimedia Experience, pp. 277–292. The MIT Press, Cam-
bridge (1998)

10. Lienhard, A., Fierz, J., Nierstrasz, O.: Flow-centric, back-in-time debugging. In:
Oriol, M., Meyer, B. (eds.) TOOLS EUROPE 2009. Lecture Notes in Business
Information Processing, vol. 33, pp. 272–288. Springer, Heidelberg (2009)

11. Lienhard, A., Gîrba, T., Wang, J.: Practical Object-Oriented Back-in-Time Debug-
ging. In: Ryan, M. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 592–615. Springer,
Heidelberg (2008)

12. Pothier, G., Tanter, É.: Back to the future: Omniscient debugging. IEEE Soft-
ware 26(6), 78–95 (2009)

13. Pothier, G., Tanter, É., Piquer, J.: Scalable omniscient debugging. In: Proceed-
ings of the 22nd ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA 2007), pp. 535–552. ACM Press,
New York (2007); ACM SIGPLAN Notices, 42(10)

14. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: Proc. 21st Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA (2010)

15. Saito, Y.: Jockey: a user-space library for record-replay debugging. In: Proceedings
of the Sixth International Symposium on Automated Analysis-driven Debugging
(AADEBUG 2005), pp. 69–76. ACM Press, New York (2005)

16. Srinivasan, S.M., Kandula, S., Andrews, C.R., Zhou, Y.: Flashback: a lightweight
extension for rollback and deterministic replay for software debugging. In: ATEC
2004: Proceedings of the Annual Conference on USENIX Annual Technical Con-
ference, pp. 3–3. USENIX Association, Berkeley (2004)

17. Tallam, S., Gupta, R., Zhang, X.: Extended whole program paths. In: Interna-
tional Conference on Parallel Architectures and Compilation Techniques, pp. 17–26
(2005)

18. Xin, B., Sumner, W.N., Zhang, X.: Efficient program execution indexing. In: Gupta,
R., Amarasinghe, S.P. (eds.) PLDI, pp. 238–248. ACM, New York (2008)

19. Xu, M., Malyugin, V., Sheldon, J., Venkitachalam, G., Weissman, B., Inc, V.: Re-
trace: Collecting execution trace with virtual machine deterministic replay. In: In
Proceedings of the 3rd Annual Workshop on Modeling, Benchmarking and Simu-
lation, MoBS (2007)

20. Zhang, X., Gupta, R.: Whole execution traces and their applications. ACM Trans.
Archit. Code Optim. 2(3), 301–334 (2005)

	Summarized Trace Indexing and Querying for Scalable Back-in-Time Debugging
	Introduction
	Summarized Trace Indexing and Querying
	Process Overview
	System Architecture

	Trace Capture and Partial Deterministic Replay
	Capture
	Initial Replay
	Snapshots

	Indexing of Control Flow
	Range Min-Max Tree
	Indexing and Querying

	Indexing of Memory Accesses
	Index Structure and Querying
	Pipelined Index Construction
	Local Variables

	Benchmarks
	Global Results
	Cost of Individual Features

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

