
CSE 503: Software Engineering

Winter 2014

Lecturer: Michael Ernst

503 Software Engineering Research

• Not: how to write good software

– and get a good job at Amazon/Google/Microsoft

• Research methods and ideas in SE

– this may make you a more thoughtful developer

What does my program do?

Program analysis techniques:
• Abstract interpretation
• Type systems
• Model checking
• Analysis back-ends
• Test generation
• Dynamic analysis
• Refactoring
• Slicing
• More

Abstract interpretation
(or “dataflow analysis”)

• Statically (over-)estimate what the program
may do at run time

• “Run” your program statically
– Choose an abstract domain; e.g., { +, 0, - }

– Assign semantics to operators

– Start at beginning of program

– Examine possible values of variables

• Similar to unfolding the computation

• Used daily on aeronautics software

Type systems

• A type is a set of (possible) values

• Checking

• Inference

• Polymorphism

• Non-standard type systems
– view type system as a set of constraints to

compute legal refactorings

– use type inference to recover abstractions from
optimized code

Model checking

• In simplest terms, exhaustive testing

– Verify that every possible execution satisfies a given
property

– Very effective for hardware (inherently finite-state)

– Popular for concurrent software

• How to make this scale?

– Choose abstractions that lose just the right amount of
precision

• Counterexample-guided refinement

– Efficient encodings

Analysis back-ends

• Reduce one problem to another
– Often, produce a logical formula

• Reduction to SAT
– 1979: “Problem X reduces to SAT, so it is hard.”
– 2009: “Problem X reduces to SAT, so it is easy.”

• SMT (satisfiability modulo theories)
– add non-logical constructs (e.g., arithmetic) to the logical

formula

• Datalog (prolog-like; used in database community)
• Binary Decision Diagrams (BDDs)
• Boolean programs
• Theorem provers

Test generation

• Random
– Scaleable, and more effective than you think

• Symbolic
– What if statements guard a line of code?

– Compute an input that satisfies them

• Concolic (concrete + symbolic)
– Run tests, then try to slightly modify them to

achieve more coverage

• Evaluation of testing approaches

Dynamic analysis

• Testing

• Model creation

– Observe executions, generalize from them

• Type inference

• Fault localization

Refactoring

• Refactoring changes program code without
changing its meaning

• What constraints need to be generated to
preserve the meaning?

• How to explore the space of solutions?

More

• Pointer and alias analysis

• Modeling and model-based development

• Configuration management

• Code generation and code completion

• Historical analysis

– Prediction of bug-prone code

Applications

• Security

• Correctness

• Performance

• Rapid development

• System analysis

• Maintenance and evolution

Broader themes

• Precision vs. performance

• Power vs. transparency

• Static vs. dynamic

• Tuning analysis to the real problem

Format

• Lectures:
– 50%: classic background
– 50%: current research
– Lectures are interactive (and, few slides)

• Homework:
– Read research papers
– 1 in-class presentation

• Group project to put the ideas into practice
– Makes you a better researcher, in any field
– You choose a topic (suggestions are provided)
– Most projects lead to a publication or other research use

• Not a requirement, just a common outcome

Who cares?

• Intellectually exciting and deep

• Spans both “hard” and “soft” areas of
computing

• Connections to programming languages,
security, systems, architecture, databases, and
many more!

• Quals credit

