
5/20/2011

1

CSE503:

SOFTWARE ENGINEERING
PROJECT PROPOSALS

David Notkin

Spring 2011

Lazy Evaluation for MapReduce Workflows

Kristi Morton, Magdalena Balazinska, Dan
Grossman, and Christopher Olston

Motivating Scenario

• Data deluge in sciences

– LSST workflow process 30TB of new data every day

• Only a subset of data needed

• High-latency analysis tasks in workflows

– On MapReduce (MR) can take hours to run

– Limits scientific discovery

Goal:
 Make workflows efficient by being lazy: only run on region of interest.

LSST Workflow

MR Job 1
Clean data

MR Job 2
Extract/transform

features

MR Job 3
Classify particles for a region of
space (x,y,z) on some property

30 TB

Lazy processing: observe usage in workflow and only processes data of interest.

Any additional data is computed on demand, per user’s request.

5/20/2011

2

Lazy Evaluation for MapReduce Workflows

Context for Project # 2:

• Continuation from Project 1

• Workflows expressed as PigLatin scripts

• Use User Defined Function (UDF) for lazy evaluation
framework

Lazy Evaluation for MapReduce Workflows

• To produce the lazy materialized view, UDF needs:
1. PigLatin workflow script

2. Fields needed by user: e.g. gas, temp

3. Delimiter

REGISTER udfs.jar;

gas43 = LOAD ’gas43full’ USING BinStorage() AS

 (pid:long, mass:double, px:double, py:double,

 pz:double,temp:double, ...);

gas = FILTER gas43 BY pid is not null AND mass is not null

 AND px is not null AND py is not null

 AND pz is not null AND temp is not null...;

regionA = FILTER gas BY temp > udfs.VirialTemp(Rvir,Mvir,pid)

 AND px >= -0.5 AND px < -0.25

 AND py >= 0 AND py < 0.5

 AND pz >= -0.5 AND pz < 0;

STORE regionA INTO ’result’ USING BinStorage()

Lazy Evaluation for MapReduce Workflows

Gas Temp

a 200

b 150

c 1000

d 999

… …

All other fields with pointers to PigLatin
scripts to generate them on the fly (i.e. the
“closures” part

We generate the following materialized view + metadata:

Project 2 work to do

• Previous project generated simple metadata for on demand
fields
– Naïve approach: each field pointed to full workload script (i.e. computed all

fields)

– Need to have fields point to appropriate subset to compute only the data for
the field not all fields

• Need to generate subset scripts to compute individual fields

– Involves looking at level of execution plan tree and pruning off
subtrees

– Will need to hack Pig query compiler, which is a nontrivial task 

5/20/2011

3

Testing (and Scripting) GUIs

Daniel Leventhal – cse 503

We know how to test code

bool testSqrt(int input, double out)

{

 return out == sqrt(input);

}

testSqrt(9, 3);

testSqrt(0, 0);

testSqrt(100, 10);

How do we test GUIs? How do we test GUIs?

 Test what the user actually sees

5/20/2011

4

GUI testing is miserable

 Support is often worse than “normal” tests

 Often hard to write the test

 Can’t run in parallel

 They take longer to run

 Harder to debug

 Harder to change

 Harder to figure out what to change

 They are testing what the user actually sees!

 (or should be)

Scripting Tests

 How do you specify a test?

 List screen coordinates

 Mark the UI widget in some way

 Specify what the widget look like [Sikuli]

 How do you adapt to change?

 UIs often undergo visual polish close to shipping

 Specify widgets based on their content or their position in the

tree

Accessibility API

 Doesn’t the accessibility API provide everything you need?

 Only covers 80% of the widgets out there [Hurst 2010]

 If the API doesn’t work you are toast.

Prefab to the Rescue!

 Prefab identifies occurrences of a widget from its pixels

 Text is recovered

 Hierarchy of widgets is identified

 Use Prefab to build tools for scripting and testing GUIs

 Tests/scripts can be less brittle

 Specify the widget at an appropriate level of abstraction.

5/20/2011

5

Prefab basics Testing/Scripting Framework with Prefab

 Develop API for testing/scripting applications

 Leverage Prefab’s identification of widgets, content, and

hierarchy

 Author tests that are resilient to changes in the UI.

Adrian S.

5/20/2011

6

Design Patterns for

Security & Privacy

Franzi Roesner

CSE 503 Project Proposal

May 10, 2011

Security Design Pattern Sampler

• Single Access Point: Providing a security module and a way to log into
the system

• Roles: Organizing users with similar security privileges

• Session: Localizing global information in a multi-user environment

• Limited View: Allowing users to only see what they have access to

• Secure Access Layer: Integrating app security with low level security

• Partitioned Application: Splits a large, complex application into simpler
components; any dangerous privilege is restricted to a single, small
component.

• Input Validator: Validate input from the client to the server

Privacy Design Pattern Sampler

• Informed Consent for Web-Based Transactions: Describes how
websites can inform users whenever they intend to collect and use
an individual’s personal information

• Masking Your Online Traffic: Decreasing the flow of
information from the data owner to the data collector

• Minimal Information Asymmetry: Increasing the flow of
information from data collectors to data owners.

• Protection Against Cookies: Provides countermeasures against
the misuse of cookies in the WWW.

• Pseudonymous Email: Describes the mechanism of a
pseudonymous email delivery system

5/20/2011

7

Adding Security to Patterns

• Secure Blackboard Pattern: Decouples interacting

agents from each other with an intermediary agent.

• Secure Broker Pattern: Architectural pattern can be

used to structure distributing software systems with

decoupled components that interact by remote

service invocations.

Proposal: Patterns for Web Tracking

• Web tracking:

• Analytics on a page

• Third-party tracking across sites

• Tracking methods

• cookies, LocalStorage, Flash LSOs, cache data, images,

web history, window.name, …

Proposal: Patterns for Web Tracking

• Properties we might want:

• Trackers can’t track me across sites unless I consent.

• Seamlessly associate different browsing profiles with different roles.

• Retroactively remove visited sites from tracking list.

• Robustness against future developments in tracking methods.

• Functionality (e.g. Facebook) while opting out of tracking.

• Tracking history while logged out (of e.g. Facebook) can’t be linked to
my identity when I log back in.

• Same guarantees on mobile browser as on desktop browser.

• Today’s tools are insufficient…

• Can design patterns help?

Incidental Research Questions

• Are any of these security and privacy design patterns

actually in use as such?

• If not, why haven’t they been useful?

• Do there need to be so many? Can they be reduced

to a canonical set?

5/20/2011

8

Answering Tomorrow’s Problems

Current and Coming Tech

• Tablet PCs

• Kinect, PS Move

• International high-speed
networks

Current and Coming Needs

• Better domestic education system

• Better trained and connected
workforce

• Better education and stability in
developing countries

Ben P.

How will software answer these
questions with these technologies?

Finding present and future solutions

Researching design and
development challenges

5/20/2011

9

5/20/2011

10

GUI for Daikon

Yanping H.

What is Daikon

• Dynamic Analysis for Inferring Likely

Invariants

• Guessing invariants with static analysis is

hard

• Solution: guessing invariants by watching

actual program behavior is easy

• Generate lots and lots of potential

invariants

• The initial set can be infinite, provided

there is a way to prune to a finite set with

only a few observations

• Let the tests weed out most of the

candidates

Daikon in action

5/20/2011

11

• Daikon checks invariants over

variables at the entrance and exist of

programs.
 void sum(int *b,int n) {

 pre:

 n ≥ 0 i, s := 0, 0;

 do i ≠ n

 i, s := i+1, s+b[i]

 post: s=sum(b[j], 0 ≤j<n)

 }

 • No all detected invariants/variables are

interesting.
 For example 0 ≤ i≤n

Goals

• Develop a GUI for daikon that allows users to

select variants/functions/variable they are

interested in

• Show resulting invariant in a GUI that are easy

for user to comprehend.

Not all interesting invariants are

included

• Need to modify and recompile Daikon to include

new invariants.

• Use Java reflection to add new-defined invariants

• How to check legal invariant class?

If time permits

• Include unities to highlight invariant changes

between a pair of program versions.

5/20/2011

12

Engineering
Crowdsourcing Software

Hao Lu and Joseph Xu

The Turk

VizWiz Soylent

5/20/2011

13

Platform

• Mechanic Turk

• …

Existing Toolkit

• TurKit

• CrowdForge

Is it hard? Use the crowd just as function call?

5/20/2011

14

Quicksort in TurKit Quicksort in TurKit

Quicksort in TurKit Quicksort in TurKit

5/20/2011

15

Quicksort in TurKit Quicksort in TurKit

Crash-and-rerun programming Issues

• “Crash-and-rerun” is unnatural

5/20/2011

16

Parallelism Parallelism

fork

fork
fork

join

join

Issues

• “Crash-and-rerun” is unnatural

• Fork and Join adds complexity

Existing knowledge

5/20/2011

17

Existing knowledge Issues

• “Crash-and-rerun” is unnatural

• Fork and Join adds complexity

• Existing knowledge adds more complexity

Questions to answer in our project

• Are these issues general?

Questions to answer in our project

• How can we hide these complexity?

5/20/2011

18

Question?

