
CSE 503: Program Analysis
Winter 2010

Syllabus
Course website: http://www.cs.washington.edu/503/

Class meetings: MW 10:30-11:50, room MGH 238

Lecturer: Michael Ernst
http://www.cs.washington.edu/homes/mernst/
Office hours: by appointment. While there are no set office hours, I welcome discussions with students. Please don’t
be shy about contacting me if you wish to meet!

TA: Todd Schiller
http://www.cs.washington.edu/homes/tws/
Office hours: TBA

1 Structure of the course
In many years CSE 503 is a broad course that covers all aspects of software development. This year’s offering is more
narrow but deeper, and can be repeated by people who have already taken CSE 503 in the past.

For a list of specific topics that may be covered, see the course webpage.

2 Grades
Grades will be assigned based on the project (80%), class participation (20%), and instructor discretion. As this is a
graduate class, the class is likely to be A-centered, but students are not guaranteed a grade of A.

3 Papers
CSE 503 is a graduate paper-reading seminar. Each class session will begin with a brief discussion and presentation of
material, after (or during) which the floor will be open to rebuttals, discussion of related work, criticism, brainstorming
about follow-on research, etc. At this level in your career, you should no longer be a passive listener to lectures but an
active participant in the discussion.

To help you prepare, you will write a one-paragraph commentary on each paper, and submit it at least 24 hours
before the class meets to discuss the paper. You will post your commentary to the course webpage for viewing by the
instructor and by other students. The commentary should reflect your understanding and analysis of the issues raised
by the paper, and should also help direct (both your and others’) preparation for in-class discussion.

You may write the commentary in whatever style you prefer that meets the goals listed above. One good format
for the commentary is to critique the paper, listing the following three points: its biggest contribution (and, briefly,
why that result was not already obvious), its biggest mistake (in motivation, methodology, algorithm, data analysis,
conclusions, or some other area), and the biggest question that it raises (or the most interesting and important follow-
on work that it suggests). Another acceptable format is to summarize the paper, describing its thesis, approach, and
conclusions, and stating why it is significant. The commentary should also list questions that you have about the paper,
such as about technical points or connections to related work.

It’s OK if you read the paper and there are issues you do not understand. Please ask questions about those issues
— both in your summary and in class — and we will all gain by the discussion. It’s best to explain why something
makes no sense to you. For example, don’t just say, “I didn’t understand section 2”, but state where there is a logical
fallacy or a conclusion that does not follow. The lecturer will use these questions to help shape the lectures.

1



I also encourage you to use the summaries to ask questions. If you have a question, it is likely that many other
people have the same question but are too shy (or vain, or insecure) to ask it; they will appreciate your raising the
point. However, do come to class prepared: carefully read the paper and get as much as you can out of it on your own.
Doing so will make the class time that much more productive.

You will have access to all the other students’ submissions. Please read them, because reading the other summaries
is a good way for you to get perspective. You can see what you missed (or what other people missed), and whether
you agree with their take on the key ideas. It will help to make the class sessions more productive.

Please submit your summary in PDF form, and include your name.
Each student will present one paper during the semester. The presentations will be done by pairs of students if

there are enough students registered. Presenters will meet with the lecturer a week before the class meeting to receive
feedback and improve their presentation. You should come to that meeting prepared with questions, not just expecting
to run through all of your slides. The goal of your presentation should be that the class understands the main ideas
afterward. (The goal of your presentation is not to prove that you know the material!)

4 Projects
The centerpiece of the course is a semester-long project, done in groups of 2–4 students. The project should make a
research contribution in the area of tool support for programming tasks. As a research contribution, it should answer
a question whose answer no one previously knew.

A non-exhaustive list of types of acceptable projects are:

• proposing and evaluating a fundamental new technique
• developing and assessing new algorithms to replace currently-used ones
• translating a methodology to a new problem domain
• applying known techniques to new problem domains, such as operating systems, networks, embedded systems,

security, biology, aerospace, etc.
• evaluation of existing techniques or tools, via case studies or controlled experiments
• port an existing tool to a new domain (e.g., a new programming language or a new version of one)
• implementation of a proposed but never implemented technique

A list of specific potential projects will be distributed at the second class meeting. (It is intentionally not being
distributed until after you have completed Assignment 1.) You may select (or modify) a project from among the list
of suggested ones, from your answers to Assignment 1, from other students’ answers to Assignment 1, or from other
sources. The lecturer will help you choose and refine a project.

For instance, you might start from a programming problem that has vexed you and devise a solution (or demonstrate
that it is a broader problem than previously recognized). You might take a paper of particular interest to you and attack
one of the problems listed in its future work section. You might take a promising paper that lacks experimental
evaluation, or whose methodology is flawed, and perform a proper experimental evaluation.

You should also consider building on your strengths and finding ways to leverage other work that you are doing.
For instance, if you do work in AI, you might consider how machine learning could be applied to problems of program
comprehension or to filtering output from program analysis tools. You also might consider using a project that you are
working on, or that you worked on in the past, as a test case for a tool. Synergies with your other work are welcomed!

Your final project report should be written in the style of a conference paper, and you will present it in a CSE
503 “conference” at the end of the semester. (You are not required to submit your work to a conference or workshop,
but you might choose to do so, and this is the standard of work expected.) Please use the ACM proceedings style
(http://www.acm.org/sigs/publications/proceedings-templates), but not the tighter alternate style since
the class does not impose a page limit.

You need not close the book on the area of research you choose, but you should do a good job of discovering and
clearly communicating new knowledge in that area. Do not feel overwhelmed by the final project or final report. The
instructor will meet with you repeatedly for discussions, feedback, and assistance on all aspects of your project. For
tips about writing a technical paper, you should read (among other resources) http://www.cs.washington.edu/
homes/mernst/advice/write-technical-paper.html.

2



4.1 Timetable
January 13: Proposal

Select a group, select a project, and write a short (1–3 pages) project proposal that includes its thesis and technical
approach.

Be sure to motivate your project. Your paper should start with the problem. You also must give a use case —
essentially, a story about how the tool is used. For example, a software developer wants to perform a particular,
realistic task, but cannot. Be specific about the problem and about why current techniques do not address it. Your tool
solves that problem. Indicate exactly what inputs the developer must supply, exactly what the developer gets as output,
and how that is useful in practice. Include an architectural diagram of how the pieces of your system fit together.

Include evaluation criteria. The philosopher of science Karl Popper states that a theory is scientific only if it is
falsifiable — if some experiment exists that would disprove it. You need to clearly state an experimentally refutable
thesis or hypothesis. You should also state your evaluation metric, which should be, at least in part, quantifiable.
Another way to think of this is: how will you convince a skeptical reader that you succeeded? They aren’t going to
just take your word that your project was a success.

Clearly state the scientific question or contribution. For example, how is your project an (incremental) advance
over previous work? It’s good (and in some cases sufficient) that it enables developers to do something they have
never been able to do before. But you can also extend a technique to a new domain, or expand a problem statement.
And ideally, your results will be transferable to other domains: they will change the way that others think or act in
the future, or provide guidance to programmers or to tool developers or both. Oftentimes, much of your project is not
novel. That’s OK — engineering is necessary in order to do experiments or to build on previous work — so long as
you can point out the part that is novel.

January 15: Approval of proposal

Meet with the instructor for feedback on and approval of your project proposal.

February 3: Related work and methodology complete

Submit a version of your report that includes the introduction, description of the technical approach (e.g., algorithmic
details), related work (in final form), and experimental methodology (i.e., evaluation plan). Each version of the paper
should also address all previous comments from the course staff.

The evaluation plan should indicate what subject programs you will use and what metrics you will measure. It
should explain why those are the right metrics, and what they reveal about your work. (For example, do they address
the novel part of your technique, or are they end-to-end measures? Can they be directly compared to previous work,
or not?) It should also indicate your criteria for success. (You should lay those out now, so that you have an objective
measure when the research is complete.) This version of the paper should include all the tables or graphs (if any) that
will appear in the final paper, and the structure of any textual sections of the evaluation. The tables or graphs will be
empty for now, but you should know what they are.

You should have already divided the work among members of your group.
Do not stint on this component of the project: a prototype implementation and draft report is due in just three

weeks.

February 24: Initial results

Submit a version of the report that includes at least partial results. If you are building a tool, you should have a
prototype implementation that can run correctly end-to-end on a small example program. (For example, a compiler
might be able to compile the factorial program.) Having a working implementation now will enable you to enhance it
and to run experiments during the next several weeks; if you do not even yet have working code yet, you are unlikely
to be able to complete a quality project in time.

As a rule of thumb, by this point you should have one row or column in each table filled in.

3



March 12 (last day of classes): Final report

March 15, 12:30-4:00: Project presentations

You should plan to talk for 20–25 minutes, followed by 5–10 minutes for questions (though the questions may come
during rather than after the talk). As with any talk, be sure to practice it before you present in class. Be sure to include
plenty of examples! (Even after receiving this advice, most groups fail to include enough to make their ideas compre-
hensible.) For more tips, see http://www.cs.washington.edu/homes/mernst/advice/giving-talk.html.

4


