
Points-to Analysis by Type Inferenceof Programs with Structures and UnionsBjarne SteensgaardMicrosoft Research�AbstractWe present an interprocedural ow-insensitive points-to analysis algorithmbased on monomorphic type inference. The source language model the impor-tant features of C including pointers, pointer arithmetic, pointers to functions,structured objects, and unions. The algorithm is based on a non-standard typesystem where types represent nodes and edges in a storage shape graph.This work is an extension of previous work on performing points-to analysisof C programs in almost linear time. This work makes three new contributions.The �rst is an extension of a type system for describing storage shape graphsto include objects with internal structure. The second is a constraint systemthat can deal with arbitrary use of pointers and which incorporates a two-tierdomain of pointer o�sets to improve the results of the analysis. The third is ane�cient inference algorithm for the constraint system, leading to an algorithmthat has close to linear time and space performance in practice.Keywords: interprocedural program analysis, points-to analysis, C programs, non-standard types, constraint solving.1 IntroductionModern optimizing compilers and program understanding and browsing tools forpointer languages like C [Ame89, KR88] are dependent on semantic information ob-tained by either an alias analysis or a points-to analysis. Alias analyses compute pairsof expressions (or access paths) that may be aliased (e.g., [LR92, LRZ93]). Points-to analyses compute a store model using abstract locations (e.g., [CWZ90, EGH94,WL95, Ruf95]). Points-to analysis results serve no purpose in themselves, but theyare a prerequisite for most other analyses and transformations for imperative pro-grams (e.g., computing use-def relations, permitted code motion, and detection of useof uninitialized variables).Most current compilers and programming tools use only intraprocedural points-toanalyses, as the polynomial time and space complexity of the common data-ow basedpoints-to analyses prevents the use of interprocedural analyses for large programs.Interprocedural analysis is becoming increasingly important, as it is a prerequisite forwhole-program optimization and various program understanding tools.�Author's address: Microsoft Corporation, One Microsoft Way, Redmond, WA, USA.E-mail: rusa@research.microsoft.com

int i1, *i2, **i3, **i4;float f1, **f2;struct fint a, *b, *c;g s1, *s2;struct fint d, *e; float f, *g;g s3, *s4;s2 = &s1;s4 = &s3;f2 = &s4->g;*f2 = &f1;i3 = &s2->b;i4 = &s2->c;*i4 = &i1;i2 = (int*) s2;i2 = (int*) s4;

�1 -�2 ����:�3 ����*�4 �����*�5 �����*�6 �����>
�7�8�9�10 �����: �11

i1: �11 i2: �1i3: �4 i4: �6f1: �11 f2: �5s1: �7 s2: �2s3: �7 s4: �3Figure 1: A small C program fragment, the storage shape graph that our algorithm buildsfor it out of types, and a typing of the program variables. Type �7 represents both structuredvariables in the program. The third type component, �10, of �7 represents structure elementss1.c, s2.f and s2.g.We extend our previous work on ow-insensitive interprocedural points-to analysisof C programs by type inference methods [Ste96, Ste95] by enabling the algorithmto distinguish between components of structured objects, thereby increasing the pre-cision of the analysis in the presence of structures and unions in the program to beanalyzed. Other members of our research group have found this extension crucial tothe value (accuracy) of some subsequent analyses (e.g., detection of use of uninitializedvariables). The extended algorithm does not have the almost linear time complex-ity of the original algorithms, but it is exhibiting close to linear time complexity inpractice (Sect. 5.3 discusses complexity).The algorithm is based on type inference over a domain of types that can modela storage shape graph [CWZ90]. The inferred types describe the use of memorylocations. The declarations of locations are irrelevant. The algorithm computes avalid typing even when memory locations are used in inconsistent ways, in contrastto ML type inference which will fail to compute a typing in that case. An exampleillustrating types modeling a storage shape graph for a program is shown in Fig. 1.The computed solution is a storage shape graph that is a conservative descriptionof the dynamic storage shape graphs for all program points simultaneously. If pro-grammers use locations in a consistent manner throughout their programs the lossin precision by not computing separate solutions for each program point is typicallysmall. Computing only one storage shape graph permits the algorithm to be fast foreven very large programs.We proceed by stating the source language (Sect. 2), which captures the essentialparts of the C programming language, the non-standard set of types we use to modelthe storage use (Sect. 3), and a set of typing rules for programs (Sect. 4). Finding atyping of the program that obeys the constraints imposed by the typing rules amountsto performing a points-to analysis. We then show how to e�ciently deduce the min-imal typing that obeys the constraints (Sect. 5) and report on practical experiencewith the algorithm (Sect. 6). Finally we describe related work (Sect. 7) and presentour conclusions and point out directions for future work (Sect. 8).

S ::= x =s yj x =s &yj x =s �yj x =s allocate(y)j �x =s yj x =s op(y1: : : yn)j x =s &y->nj x =s fun(f1: : : fn)!(r1: : : rm) S �j x1: : : xm =s1:::sm p(y1: : : yn)Figure 2: Abstract syntax of the relevant statements, S, of the source language. x, y, f, r,and p range over the (unbounded) set of variable names and constants. n ranges over the(unbounded) set of structure element names. op ranges over the set of primitive operatornames. S � denotes a sequence of statements. The assignment operator, =, is annotatedwith a size, s, indicating the size of the representation of the value being assigned. Thecontrol structures of the language are irrelevant.2 The Source LanguageWe describe the points-to analysis for a pointer language with structures and unionsthat captures the important properties of the C programming language [Ame89,KR88]. Since the analysis is ow insensitive, the control structures of the languageare irrelevant. An important feature of the language is that any memory object maybe accessed as a unit or as a structured object. Type casts and variable declarations asfound in C are irrelevant; the source language permits inconsistent use of locations aswell as the use of any memory object as a structured object without such constructs.Unions are implicit in the use of memory objects. Figure 2 shows the abstract syntaxof the relevant parts of the language.The syntax for pointer operations borrows from the C programming language. Allvariables are assumed to have unique names. The op(: : :) expression form is used todescribe primitive computations like arithmetic operations. The allocate(y) expressiondynamically allocates a block of memory of size y.Functions are constant values described by the fun(: : :)!(: : :)S � expression form1.The fi variables are formal parameters (sometimes called in parameters), and the rivariables are return values (sometimes called out parameters). Function calls havecall-by-value semantics [ASU86]. Both formal and return parameter variables mayappear in left- and right-hand-side position in statements in the function body.We assume that programs are as well-behaved as (mostly) portable C programs.We allow assignment of a structured value to a location supposed to hold only pointervalues, and vice versa, provided the representation of the assigned value �ts withinthe size of the representation of the object being modi�ed. The analysis algorithmmay produce wrong (unsafe) results for programs that construct pointers from scratch(e.g., by bitwise duplication of pointers by control ow rather than data ow) andnon-portable programs (e.g., programs that rely on how a speci�c compiler allocatesvariables relative to each other). All previously described analyses su�er from thesame problem. However, the analysis algorithm as presented below will deal with,e.g., exclusive-or operations on pointer values, where there is a ow of values.1We allow functions with multiple return values; a feature not found in C.

3 TypesFor the purpose of performing the points-to analysis, we de�ne a non-standard set oftypes to describe the store. The types are unrelated to the types normally used in C(e.g., integer, float, pointer, struct). The types are used to model how storageis used in a program at runtime (a storage model). Locations of program variablesand locations created by dynamic allocation are all described by types. Each typedescribes a set of locations as well as the possible runtime contents of those locations.The types must be able to model both simple locations, which are only ever ac-cessed as a whole (e.g., integer variables), structured locations, and locations thatare accessed in inconsistent ways. We want to accommodate inconsistent accesses oflocations with minimal information loss. We use four di�erent kinds of types: blankdescribes locations with no access pattern, simple describes locations only accessedas a whole, struct describes locations only accessed as structured objects, and objectdescribes locations accessed in ways not covered by the other three kinds of types.Structured objects may be accessed in inconsistent ways. We want the structtypes to be able to describe commonalities in the accesses anyway. We assume struc-tures with a \common pre�x" share layout of the common pre�x elements. Thestruct types have component types describing distinguishable components of a loca-tion, where \distinguishable" means that any access of part of the memory object onlyaccesses a single component. For the program fragment in Fig. 1, one distinguishablecomponent describes the �rst element of the structured objects, another the secondelement, and a third the remaining components.The size of an access is important. For example, if a pointer value may pointto an integer component of a structured object and an access through the pointer is\larger" than the size of an integer, other components of the structure pointed intomay be modi�ed or retrieved. For example, if the program fragment shown in Fig. 1were extended with a reference of *(long*)i3" then the structures would only havetwo distinguishable components.The type of a memory object must also describe the contents of the object. Onlypointer values are relevant. We describe pointers to locations by the type represent-ing the object(s) it pointed to or into and an o�set, which may be either zero orunknown. If a pointer with an unknown o�set is used in an indirect assignment(e.g., �x =s y) then we don't know what part of the referenced object is being modi-�ed, and the object must be described by an object type.Functions, or rather function pointer values, are described by signature typesdescribing the locations of the argument and result values.The non-standard set of types used by our points-to analysis algorithm is describedby the following productions:� ::= ? j simple(�; �; s; p) j struct(m; s; p) jobject(�; �; s; p) j blank(s; p) (Objects)� ::= (� � o) (Pointers)o ::= zero j unknown (O�sets)� ::= ? j lam(�1 : : : �n)(�n+1 : : : �n+m) (Functions)s ::= SIZE j > (Sizes)p ::= P(�) j > (Parents)m ::= (element 7! �) mapping (Elements)

i1: �11 = simple(?;?;>; ;)i2: �1 = simple(�7;?; < ptr >; ;)i3: �4 = simple(�9;?; < ptr >; ;)i4: �6 = simple(�10;?; < ptr >; ;)f1: �11f2: �5 = simple(�10;?; < ptr >; ;)s1: �7 = struct([< int >7! �8; < int; int >7! �9; * 7! �10];>; ;)s2: �2 = simple(�9;?; < ptr >; ;)s3: �7s4: �3 = simple(�9;?; < ptr >; ;)�8 = simple(?;?; < int >; f�7g)�9 = simple(?;?; < int >; f�7g)�10 = object(�11;?;>; f�7g)Figure 3: Typing of the program fragment of Fig. 1 in terms of the types of our analysisalgorithm.The � types describe objects or object components, the � types describe pointersto locations, the � types describe pointers to functions. The m type componentsare mappings from structure element speci�ers to component types. The elementspeci�ers can be either symbolic or numeric.The s type components describe object or object component sizes. The sizes canbe either numeric or symbolic. The > size indicates the rest of a memory object andis used in types describing objects of di�erent sizes. The p type components describethe set of struct types (parents) of which a given type is a component. The > valuemeans \no parents" and is introduced to enable a requirement that a type has noparents while allowing use of least-upper-bound operators in the inference algorithm.We assume the programmer is denied knowledge of the activation record layout andtherefore do not consider parents of � type.Types may be recursive (the type graph may be cyclic). The types may be writtenout using type identi�ers (type variables). Two types are equal when they are eitherboth ? or are described by the same type identi�er. Note that this is di�erent fromthe usual structural equality criterion on types. We could use the structural equalitycriterion if we added a tag to the � , o, and � types.Figure 3 shows the typing of the variables of the program fragment of Fig. 1.4 Typing RulesIn this section we de�ne a set of typing rules based on the set of non-standard typesde�ned in the previous section. The typing rules specify when a program is well-typed.A well-typed program is one for which the static storage shape graph indicated bythe types is a safe (conservative) description of all possible dynamic (runtime) storagecon�gurations and which also safely describes the use of the storage.There are three kinds of use of storage in the source language. Use via pointerindirection uses the pointer location as a whole. Computing the address of a structureelement is a use of a location as a structured object. These two uses force the locationbeing addressed to be described by at least a simple or struct type respectively inthe � s partial order described below. The third kind of use is by assignment of entire

objects. For example, if we assign a structured value to a location that is otherwiseused only as a whole the contents of the location assigned to is used in inconsistentways. The assigned-to location must therefore be described by an object type, whilethe assigned-from location may still be described by a struct type.We use the partial order a� s b to describe the relationship between the type, b, ofthe assigned-to location, and the type, a, of the assigned-from location. The partialorder is parameterized by a size, s, as the size of the representation of the assignedvalue must be smaller than that of (the types of) the assigned-to and the assigned-from location to avoid problems with unmodeled capture of adjacent elements in astructured object. The size constraints are trivially ful�lled if the types describe entireobjects or the entire rest of objects (s = >).The � s partial order uses the following hierarchy among the kinds of types:
blank@ �simple struct� @object

where a necessary (but not su�cient) requirement for a� s b to hold is that a and b areeither of the same kind or the kind of b appears above the kind of a in the hierarchy.If the o�set component of either a or b is unknown then we have to assumethe worst about the usage of the described memory location and the memory objectcomponent should be of the object kind.Since there is a ow of data from the assigned-from location to the assigned-tolocation, any pointer content of the assigned-from location should also be describedby the content components of the assigned-to location. We describe the relationshipbetween the assigned-from and assigned-to location contents by the vs and v partialorder between memory and function pointer component types respectively de�ned asfollows: (�1 � o1) vs (�2 � o2) , (�1 = ?) _ ((�1 vs �2) ^ (o1 v o2))�1 vs �2 , (�1 = �2) ^ (s v sizeof(�1))o1 v o2 , (o1 = zero) _ (o1 = o2)s1 v s2 , (s1 = s2) _ (s2 = >)�1 v �2 , (�1 = ?) _ (�1 = �2);where \sizeof(�)" denotes the size component of whatever kind of type � is. Forexample, a necessary requirement for simple(�1; �1; s1; p1) � s simple(�2; �2; s2; p2)to hold is that �1 vs �2 and �1 v �2 both hold.We could have used equality (=) instead of v ordering. The primary reason fornot doing so is discussed in [Ste96]. Of particular importance to the type system usedin the present paper is that use of v rather than = permits non-pointer content ofcomponents of struct mappings when a value in a struct location is assigned to anobject location.

A ` x : �1 A ` y : �2(�2 � zero)�s (�1 � zero)A `welltyped(x =s y)A ` x : sim/obj(�1; �1; s1; p1)A ` y : �2 s v s1(�2 � zero) vs �1A `welltyped(x =s &y)A ` y : sim/obj(�2; �2; s2; p2)A ` x : �1 �2 �s (�1 � zero)A `welltyped(x =s �y)A ` x : sim/obj((�1 � o1); �1; s1; p1)�1 6= ? s v s1A `welltyped(x =s allocate(y))A ` x : sim/obj(�1; �1; s1; p1)A ` y : �2 (�2 � zero)�s �1A `welltyped(�x =s y)A ` x : � A ` yi : �i8i 2 [1 : : : n] : (�i � zero)�s (� � zero)� = sim/obj((� 0 � unknown); �; s0; p)A `welltyped(x =s op(y1: : : yn))

A ` x : sim/obj(�1; �1; s1; p1)A ` y : sim/obj((�2 � o2); �2; s2; p2)�2 = object(�3; �3;>;>)s v s1 (�2 � o2) vs �1A `welltyped(x =s &y->n)A ` x : sim/obj(�1; �1; s1; p1)A ` y : simple((�2 � zero); �2; s2; p2)�2 = struct(m3; s3; p3)compatible(n,m3)s v s1 (m3(n)� zero) vs �1A `welltyped(x =s &y->n)A ` x : sim/obj(�0; �0; s0; p0)�0 = lam(�1 : : : �n)(�n+1 : : : �n+m)A ` fi : � 0i A ` rj : � 0n+jsi = sizeof(fi) sn+j = sizeof(rj) s v s08i 2 [1 : : : n] : (�i � zero)�si (� 0i � zero)8j 2 [1 : : :m] : (� 0n+j � zero)�sn+j (�n+j � zero)8x 2 S � : A `welltyped(x)A `welltyped(x =s fun(f1: : : fn)!(r1: : : rm) S �)A ` p : sim/obj(�0; �0; s0; p0)�0 = lam(�1 : : : �n)(�n+1 : : : �n+m)A ` xj : � 0n+j A ` yi : � 0i si = sizeof(yi)8i 2 [1 : : : n] : (� 0i � zero)�si (�i � zero)8j 2 [1 : : :m] : (�n+j � zero)�sj+n (� 0n+j � zero)A `welltyped(x1 : : : xm =sn+1:::sn+m p(y1: : : yn))Figure 4: Type rules for the relevant statement types of the source language. The sim/objpattern matches both simple and object types. All variables are assumed to have beenassociated with a type in the type environment, A.Given the � s partial order, well-typedness of a simple assignment statement canbe expressed as follows: A ` x : �1 A ` y : �2(�2 � zero)� s (�1 � zero)A `welltyped(x =s y)In Fig. 4 we state the typing rules for the relevant parts of the source language. Aprogram is well-typed under typing environment A if all the statements of the programare well-typed under A. A typing environment associates all variables with a type.In statements of the form x = op(y1 : : : yn), the op operation may be a comparison,a bit-wise operation, an addition, etc. Consider a subtraction (or bitwise exclusive or)of two pointer values. The result is not a pointer value, but either of the two pointervalues can be reconstituted from the result given the other pointer value2. The resultmust therefore be described by the same location type as the two input pointer valuesand an unknown o�set. There are operations from which operand pointer valuescannot be reconstituted from the result (e.g., comparisons: <, 6=, etc.). For such2This is true for most implementations of C even though subtraction of pointers to di�erentobjects is implementation dependent according to the ANSI C speci�cation [Ame89].

operations, the result is not required to be described by the same type as any inputpointer value. We treat all primitive operations identically.The typing rule for dynamic allocation states that some pointer value is beingassigned. The type that describes the allocated location need not be the type of anyvariable in the program. The type of the allocated location is then only indirectlyavailable through the type of the variable assigned to. All locations allocated by thesame statement will have the same type, but locations allocated by di�erent allocationstatements may have di�erent types.The typing rule for computing the address of a structure element makes use of apredicate, compatible(n,m). The details of the predicate is dependent on the choice ofrepresentation of element speci�ers, but the predicate should capture that the mappingdescribes a structure whose pre�x matches that of the structure being accessed up toand including the element n.We have de�ned the typing rules under the assumption that the number of formaland actual parameters (and results) always match up. The rules are trivially ex-tendible to handle programs where this is not the case and to handle programs withvariable arguments (e.g., using <stdarg.h> in C).5 E�cient Type InferencePerforming a points-to analysis amounts to inferring a typing environment underwhich a program is well-typed. The typing environment we seek is the minimal solu-tion to the well-typedness problem, i.e., each location type describes as few locationsas possible, and each function type describes as few functions as possible. In thissection we state how to e�ciently compute such a minimal solution.The basic principle of the algorithm is that we start with the assumption thatall variables are described by di�erent types (type variables) and then proceed tounifying and merging types as necessary to ensure well-typedness of di�erent parts ofthe program. Merging two types means replacing the two type variables with a singletype variable throughout the typing environment. When all parts of the program hasbeen processed, the program is well-typed.5.1 Algorithm StagesIn the �rst stage of the algorithm we provide a typing environment where all programvariables are described by di�erent type variables. A type variable consists of afast union/�nd structure (an equivalence class representative (ECR)) with associatedtype information. ECRs allows us to replace two type variables with a single typevariables by a constant time \union" operation. The initial type of each programvariable is blank(s; ;), where s is the size of the representation of the variable. Weassume that name resolution has been performed and that we can encode the typingenvironment in the program representation and get constant time access to the typevariable associated with a variable name.In the second stage of the algorithm we process each statement of the programexactly once. Type variables are joined as necessary to ensure well-typedness of eachstatement (as described in the next section). When joining two type variables, theassociated type information is uni�ed by computing the least upper bound of the twotypes, joining component type variables as necessary. Joining two types will never

make a once well-typed statement no longer be well-typed. If type variables are onlyjoined when necessary to ensure well-typedness, the �nal type graph is the minimalsolution we seek.5.2 Processing ConstraintsWhen processing a statement, we must ensure that the constraints imposed by thevs and � s partial orders are obeyed. This can be achieved by joining type variablesand by \upgrading" simple and struct types to object types and blank types tosimple, struct, or object types.It may happen that the e�ects of a constraint cannot be determined at the timeof processing the statement introducing the constraint. The algorithm uses latentconstraints by annotating type variables with actions that are to be invoked if the\value" of the type variable should change.For example, consider a partial order constraint between two function types, �1 v�2. If �1 is anything other than ?, then �1 and �2 must be joined to meet theconstraint. However, we may not know at the time of processing the statement withthe constraint whether �1 will be ? or something else in the �nal solution. Joiningthe two type variables will be safe, but it may be too conservative, and the �nal resultmay not be the minimal solution we seek. If �1 is ? at the time we encounter theconstraint, we add to the set of latent actions associated with �1 that it should bejoined with �2 if it ever changes value.Figure 5 provides the precise set of rules for processing the relevant kinds of state-ments of a program. The processing rules follow immediately from the well-typednessrules and are straightforward to implement. Figure 6 provides the details of the joinoperations.5.3 ComplexityWe argue that the space and time complexity is exponential in the size of the inputprogram using a theoretically correct (but practically meaningless) metric, is quadraticin the size of the program using a more reasonable metric, and is likely to be close tolinear in the size of the program in practice.The number of distinguishable memory locations in a program is O(expN), whereN is the size of the program. This is achievable by building a structure in the shapeof a binary tree. A size N program could also populate all the \left" leaves of sucha binary tree with pointers to the root of the tree. The points-to solution for sucha program would be of size O(expN). The runtime complexity of any points-toalgorithm computing such a solution must therefore be exponential or worse.While theoretically correct, expressing the algorithm complexity in terms of N isa practically meaningless metric of the complexity of the algorithm. We know of norelated work using this metric; although several specify complexity in terms of N theyare really using a di�erent metric. A more reasonable metric measures the complexityof the algorithm in terms of the combined size, S, of all variables of the program.The number of type variables created during the stages of our algorithm is O(S).Any constraints not involving struct types can be processed in linear space andalmost linear time complexity in terms of the number of type variables joined. Forprograms that do not use structured variables, the algorithm has a O(S) space and

x =s ylet �1 = ecr(x), �2 = ecr(y) incjoin(s; �2; �1)x =s &ylet �1 = ecr(x), �2 = ecr(y) inensure-sim/obj(�1; s)let sim/obj(�1; �1; s1; p1) = type(�1) inif s 6v s1 then expand(�1)join((�2 � zero); �1)x =s �ylet �1 = ecr(x), �2 = ecr(y) inensure-sim/obj(�2; s)let sim/obj(�2; �2; s2; p2) = type(�2) inlet (�3 � o3) = �2 in unless-zero(o3; �3)cjoin(s; �3; �1)x =s allocate(y)let � = ecr(x) inensure-sim/obj(�; s)let sim/obj(�1; �1; s1; p1) = type(�) inif s 6v s1 then expand(�)let (�1 � o1) = �1 inif type(�1) = ? thensettype(�1;blank(>; ;))�x =s ylet �1 = ecr(x), �2 = ecr(y) inensure-sim/obj(�1; s)let sim/obj(�1; �1; s1; p1) = type(�1) inlet (�3 � o3) = �1 in unless-zero(o3; �3)cjoin(s; �2; �3)x =s fun(f1: : : fn)!(r1: : : rm) S �let �0 = ecr(x) inensure-sim/obj(�0; s)let sim/obj(�0; �0; s0; p0) = type(�0) inif s 6v s0 then expand(�0)if type(�0) = ? thenlet [�1 : : : �n+m] =MakeECR(n+m) inlet t = lam(�1 : : : �n)(�n+1 : : : �n+m) insettype(�0; t),let lam(�1 : : : �n)(�n+1 : : : �n+m) = �0 infor i 2 [1 : : : n] dolet si = sizeof(fi), � 0i = ecr(fi) incjoin(si; �i; � 0i)for j 2 [1 : : :m] dolet sn+j = sizeof(rj), � 0n+j = ecr(rj) incjoin(sn+j ; � 0n+j ; �n+j)

x =s op(y1: : : yn)let � = ecr(x) infor i 2 [1 : : : n] dolet �i = ecr(yi) in cjoin(s; �i; �)ensure-sim/obj(�; s)let sim/obj(�0; �0; s0; p0) = type(�) inlet (� 0 � o0) = �0 inif type(o0) = zero thenmake-unknown(o0)x =s &y->nlet �1 = ecr(x), �0 = ecr(y) inensure-sim/obj(�1; s)ensure-sim/obj(�0; sizeof(y))let sim/obj(�1; �1; s1; p1) = type(�1)sim/obj(�2; �2; s2; p2) = type(�0) inif s 6v s1 then expand(�1)let (�2 � o2) = �2 inif type(o2) = unknown thencollapse(�2), join(�2; �1)elseunless-zero(o2; �2)if type(�2) = blank(s3; p3) thenm3 = []settype(�2; struct(m3; s3; p3))make-compatible(n;m3)join((m3(n)� zero); �1)elseif type(�2) = struct(m3; s3; p3) thenmake-compatible(n;m3)join((m3(n)� zero); �1)elsepromote(�2; sizeof(*y)), join(�2; �1)x1: : : xm =sn+1:::sn+m p(y1: : : yn)let �0 = ecr(p) inensure-sim/obj(�0; sizeof(p))let sim/obj(�0; �0; s0; p0) = type(�0) inif type(�0) = ? thenlet [�1 : : : �n+m] =MakeECR(n+m) inlet t = lam(�1 : : : �n)(�n+1 : : : �n+m) insettype(�0; t)let lam(�1 : : : �n)(�n+1 : : : �n+m) = �0 infor i 2 [1 : : : n] dolet si = sizeof(yi), � 0i = ecr(yi) incjoin(si; � 0i ; �i)for j 2 [1 : : :m] dolet � 0n+j = ecr(xj) incjoin(sn+j ; �n+j ; � 0n+j)Figure 5: Inference rules corresponding to the typing rules given in Fig. 4.make-compatible(n;m) is a side-e�ecting predicate that modi�es mapping m to be com-patible with access of structure element n (if possible and necessary) and returns a booleanvalue indicating the success of this modi�cation. MakeECR(x) constructs a list of x newECRs, each associated with the bottom type, ?. Figure 6 provides details of the otherfunctions used in the above rules.

join((�1 � o1); (�2 � o2)):if type(o1) = zero thenpending(o1) pending(o2) [f<makeunknown,o2>gelseif type(o2) = zero thenmake-unknown(o2)join(�1; �2)join(e1; e2):if type(e1) = ? thenpending(e1) pending(e1) [f<join,e1,e2>gelselet e = ecr-union(e1; e2) inpending(e) pending(e1) [pending(e2)type(e) type(e1)settype(e;unify(e1; e2))settype(e; t):type(e) tfor a 2 pending(e) docase a of[<join,e1,e2>]: join(e1; e2)[<cjoin,s,e1,e2>]: cjoin(s; e1; e2)ensure-sim/obj(�; s):case type(�) of[?]: settype(�; simple(?;?; s; ;))[blank(s0; p)]:settype(�; simple(?;?; s0; p))if s 6v s0 then expand(�)[simple(�; �; s0; p)]:if s 6v s0 then expand(�)[struct(m; s0; p)]: promote(�; s0)expand(e):let � = blank(>; ;) insettype(e;unify(type(e); �))promote(e; s):let � = object(?;?; s; ;) insettype(e;unify(type(e); �))collapse(e):let � = object(?;?;>;>) insettype(e;unify(type(e); �))make-unknown(o):type(o) unknownfor a 2 pending(o) docase a of[<collapse,�>]: collapse(�)[<makeunknown,o0>]:make-unknown(o0)

unless-zero(o; �):if type(o) = zero thenpending(o) f<collapse,�>g [pending(o)else collapse(�)cjoin(s; e1; e2):pending(e1) f<cjoin,s,e1,e2>g [pending(e1)case type(e1) of[?]: /* nothing */[blank(s1; p1)]:if s 6v s1 then expand(e1)elseif type(e2) = ? thensettype(e2;blank(s; ;))elseif s 6v sizeof(type(e2)) thenexpand(e2)[simple(�1; �1; s1; p1)]:if s 6v s1 then expand(e1)elsecase type(e2) of[?]: settype(e2; simple(�1; �1; s; ;))[blank(s2; p2)]:settype(e2; simple(�1; �1; s2; p2))if s 6v s2 then expand(e2)[simple(�2; �2; s2; p2)]:join(�1; �2), join(�1; �2)if s 6v s2 then expand(e2)[struct(m2; s2; p2)]: promote(e2; s2)[object(�2; �2;>; ;)]:join(�1; �2), join(�1; �2)[struct(m1; s1; p1)]:if s 6v s1 then expand(e1)elsecase type(e2) of[?]: settype(e2; struct(m1; s; ;))[blank(s2; p2)]:settype(e2; struct(m1; s2; p2))if s 6v s2 then expand(e2)[simple(�2; �2; s2; p2)]: promote(e2; s2)[struct(m2; s2; p2)]:if s v s2 ^8x 2 Dom(m1) :make-compatible(x;m2) thenfor x 2 Dom(m1) docjoin(sizeof(x);m1(x);m2(x))else expand(e2)[object(�2; �2;>; ;)]:for x 2 Dom(m1) docjoin(sizeof(x);m1(x); e2)[object(�1; �1;>; ;)]:if type(e2) = object(�2; �2;>; ;) thenjoin(�1; �2), join(�1; �2)else promote(e2; s)Figure 6: Implementation details for the function used in the inference rules in Figure 5.ecr(x) is the ECR representing the type of variable x, and type(E) is the type associatedwith the ECR E. join(x; y) performs the conditional vs join and cjoin(s; x; y) performs theconditional � s join of ECRs x and y. ecr-union performs a (fast union/�nd) join operationon its ECR arguments and returns the value of a subsequent �nd operation on one of them.

O(S�(S; S)) time complexity, where � is the inverse Ackerman's function [Tar83].The �(S; S) component of the time complexity is due to the use of fast union/�nddata structures. This complexity result is equal to that of our previous algorithm[Ste96].Constraints involving struct types may require processing all the element types inaddition to any joins being performed. If all structures have R or fewer elements, thealgorithm has an O(S) space and O(RS�(S; S)) time complexity. While this meansthat the algorithm has a quadratic worst-case running time complexity in terms of S,the actual running time complexity is likely to be close to linear as R is typically afairly small number. While R does grow with program size, the growth is controlledby the tendency of programmers to group structure elements in substructures whenthe number of elements grows large.6 ExperienceWe have implemented a slightly improved version of the above algorithm in our proto-type programming system based on the Value Dependence Graph (VDG) [WCES94].The implementation is performed in the Scheme programming language [CR91]. Theimplementation uses a weaker typing rule for primitive operations returning booleanvalues (thus leading to better results). It also uses predetermined transfer functionsfor calls of library functions, e�ectively making the type inference algorithm be poly-morphic (context-sensitive) for all direct calls of library functions.Our implementation demonstrates that the running time of the algorithm is roughlylinear in the size of the input program on our test-suite of around 50 C programs.We have performed points-to analysis of programs up to 75,000 lines of code3. Theexperience with the algorithm is very encouraging; we are considering doing an im-plementation that allows piecewise analysis of programs, thus permitting analysis ofprograms of a million lines of code or more.In Table 1 we present empirical data on the performance of the algorithm on theunoptimized representation of a number of programs. The programs are a subset ofthe programs in William Landi's test suite, Todd Austin's test suite, the SPEC92benchmarks, and LambdaMOO (version 1.7.1) from Xerox PARC. These programsare the same we presented results for in our previous paper [Ste96]. We have alsoincluded information on analysis of a Microsoft tool of 75,000 lines of C code.The �rst column indicates running time for our implementation of the algorithm.The time is the result of a single measurement. The time includes initial setup andtype inference. The runtime measurements are not directly comparable with theruntime measurements presented in [Ste96] as the old implementation was able to usea trick to reduce the number of initial type variables by 50%. The second columnindicates the number of extra distinguishable elements of structured objects comparedwith our previous algorithm [Ste96]. An object with two distinguishable elements willthus contribute a count of one to this number. These numbers are very signi�cantas they in most cases represent separation of distinguishable elements in central datastructures. The separation has signi�cant second-order e�ects on the results, butspace limitations prevent us from providing details.3This is the largest program we have represented in the VDG program representation.

Benchmark running structname time countlandi:allroots 0.23/0.21s 0landi:assembler 2.47/2.38s 10landi:loader 0.99/0.96s 6landi:compiler 1.17/1.16s 5landi:simulator 2.81/2.62s 8landi:lex315 0.50/0.49s 0landi:football 4.34/3.51s 1austin:anagram 0.44/0.37s 2austin:backprop 0.30/0.28s 0austin:bc 5.03/4.19s 11austin:ft 0.73/0.65s 12

Benchmark running structname time countaustin:ks 0.76/0.70s 4austin:yacr2 3.40/2.45s 0spec:compress 1.12/0.80s 0spec:eqntott 3.05/2.30s 1spec:espresso 30.0/22.2s 121spec:li 8.96/6.47s 41spec:sc 10.8/8.08s 12spec:alvinn 0.28/0.27s 0spec:ear 2.40/2.12s 6LambdaMOO 25.3/19.5s 147MS tool 95.4/58.7s 1747Table 1: Running time (wall time and process time on a 150MHz Indigo2 running ChezScheme) and number of extra distinguishable structure components relative to our previousalgorithm [Ste96].7 Related WorkThe algorithm presented in this paper is an extension of two almost-linear points-to analysis algorithms that did not distinguish between components of structuredobjects [Ste96, Ste95]. William Landi independently arrived at the earliest of thesealgorithms [Lan95]. Barbara Ryder and Sean Zhang have independently developed ansimilar algorithm that distinguishes components of structured objects [Zha95]. Theyuse a type system without a? element, substituting the v operator by the = operator,thus not being as precise as our algorithm. David Morgenthaler extended our earliestalgorithm to distinguish components of structured objects [Mor95]. His algorithm alsouses a type system without a ? element and does not incorporate pointer o�sets inthe constraint system. Furthermore, his implementation is not meant to deal correctlywith unions. His analysis is performed during parsing of the program.Henglein used type inference to perform a binding time analysis in almost lin-ear time [Hen91]. His types represent binding time values. Our points-to analysisalgorithms have been inspired by Henglein's type inference algorithm.Choi, et al., developed a ow-insensitive points-to analysis based on data owmethods [CBC93]. Their algorithm was only developed for a language with pairstructures (like cons cells in Lisp). Their algorithm has worse time and space com-plexity than our algorithm. Burke, et al., describes an improvement of the algorithm[BCCH95]. The improved algorithm does not deal with pointers into structured ob-jects and has worse time and space complexity than our algorithm. Both algorithmsare potentially more accurate than our algorithm, as their analysis results permit alocation representative to have pointers to multiple other location representatives.Andersen de�ned a ow-insensitive, context-sensitive4 points-to analysis in termsof constraints and constraint solving [And94]. The values being constrained are sets ofabstract locations, the analysis being more conventional than the analysis presented inthe present paper. His algorithm assumes source programs to be strictly conformingto ANSI C and may generate unsafe results for the large class of programs written by4Andersen uses the term \inter-procedural" to mean \context-sensitive".

programmers who make \creative" assumptions about the language implementation.A context-insensitive version of Andersen's algorithm would compute results verysimilar to those of [BCCH95] but is likely to be faster since it is based on constraintsolving rather than data ow analysis.O'Callahan and Jackson convert C programs to ML programs and use ML typeinference to compute the equivalent of points-to results [OJ95]. Not all C programscan be converted to ML by their techniques, and even then their algorithm maycompute unsafe results due to type casts in the source program.There exist many interprocedural ow-sensitive data ow analyses, e.g., [CWZ90,EGH94, WL95, Ruf95]. Both the algorithm by Chase, et al., [CWZ90] and Ruf'salgorithm [Ruf95] are context-insensitive and have polynomial time complexity. Thetwo other algorithms are context-sensitive. The algorithm by Emami, et al., [EGH94]has a exponential time complexity (in theory and in practice), as it performs a virtualunfolding of all non-recursive calls. The algorithm by Wilson and Lam [WL95] alsohas exponential time complexity but is likely to exhibit polynomial time complexityin practice as it uses partial transfer functions to summarize the behavior of alreadyanalyzed functions and procedures.8 Conclusion and Future WorkWe have presented a ow-insensitive, interprocedural, context-insensitive points-toanalysis based on type inference methods. The algorithm is being implemented. Wewill have empirical evidence that the algorithm is very e�cient in practice before the�nal version of the paper is due.This work is part of an e�ort to construct very e�cient points-to analysis algo-rithms for large programs. We have found type inference methods a very useful toolfor doing so. The algorithms presented in this paper and in previous papers [Ste96,Ste95] are based on monomorphic type inference methods. We have also investigatedextending the algorithm of [Ste96] to use polymorphic type inference methods. Wehave yet to combine the extensions to generate an context-sensitive (polymorphic)points-to algorithm that can distinguish between elements of structured objects.AcknowledgmentsRoger Crew, Michael Ernst, Erik Ruf, and Daniel Weise of the Analysts group atMicrosoft Research co-developed the VDG-based programming environment withoutwhich this work would not have come into existence. Daniel Weise and the reviewersprovided helpful comments. The author also enjoyed interesting discussions withDavid Morgenthaler, William Griswold, Barbara Ryder, Sean Zhang, and Bill Landion performing points-to analysis by type inference methods.References[Ame89] American National Standards Institute, Inc. Programming language | C, December 1989.[And94] Lars Ole Andersen. Program Analysis and Specialization for the C Programming Language.PhD thesis, Department of Computer Science, University of Copenhagen, May 1994.[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers|Principles, Techniques, andTools. Addison-Wesley, 1986.

[BCCH95] Michael Burke, Paul Carini, Jong-Deok Choi, and Michael Hind. Flow-insensitive inter-procedural alias analysis in the presence of pointers. In Proceedings from the 7th Interna-tional Workshop on Languages and Compilers for Parallel Computing, volume 892 of Lec-ture Notes in Computer Science, pages 234{250. Springer-Verlag, 1995. Extended versionpublished as Research Report RC 19546, IBM T.J. Watson Research Center, September1994.[CBC93] Jong-Deok Choi, Michael Burke, and Paul Carini. E�cient ow-sensitive interproceduralcomputation of pointer-induced aliases and side e�ects. In Proceedings of the TwentiethAnnual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,pages 232{245, January 1993.[CR91] William Clinger and Jonathan Rees (editors). Revised4 report on the algorithmic languageScheme, November 1991.[CWZ90] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers and struc-tures. In Proceedings of the SIGPLAN '90 Conference on Programming Language Designand Implementation, pages 296{310, June 1990.[EGH94] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive interproceduralpoints-to analysis in the presence of function pointers. In SIGPLAN'94: Conference onProgramming Language Design and Implementation, pages 242{256, June 20-24 1994.[Hen91] Fritz Henglein. E�cient type inference for higher-order binding-time analysis. In Func-tional Programming and Computer Architecture, pages 448{472, 1991.[KR88] BrianW. Kernighan and Dennis M. Ritchie. The C Programming Language, Second edition.Prentice Hall, 1988.[Lan95] William Landi. Almost linear time points-to analyses. Personal communication atPOPL'95, January 1995.[LR92] William Landi and Barbara G. Ryder. A safe approximate algorithm for interproceduralpointer aliasing. In Proceedings of the SIGPLAN '92 Conference on Programming LanguageDesign and Implementation, pages 235{248, June 1992.[LRZ93] William A. Landi, Barbara G. Ryder, and Sean Zhang. Interprocedural modi�cation sidee�ect analysis with pointer aliasing. In Proceedings of the SIGPLAN '93 Conference onProgramming Language Design and Implementation, pages 56{67, June 1993.[Mor95] David Morgenthaler. Poster presentation at PLDI'95, June 1995.[OJ95] Robert O'Callahan and Daniel Jackson. Detecting shared representations using type in-ference. Technical Report CMU-CS-95-202, School of Computer Science, Carnegie MellonUniversity, September 1995.[Ruf95] Erik Ruf. Context-insensitive alias analysis reconsidered. In SIGPLAN'95 Conference onProgramming Language Design and Implementation, pages 13{22, June 1995.[Ste95] Bjarne Steensgaard. Points-to analysis in almost linear time. Technical Report MSR-TR-95-08, Microsoft Research, March 1995.[Ste96] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings 23rdSIGPLAN-SIGACT Symposium on Principles of Programming Languages, January 1996.[Tar83] Robert E. Tarjan. Data structures and network ow algorithms. In Regional ConferenceSeries in Applied Mathematics, volume CMBS 44. SIAM, 1983.[WCES94] Daniel Weise, Roger F. Crew, Michael Ernst, and Bjarne Steensgaard. Value depen-dence graphs: Representation without taxation. In Proceedings 21st SIGPLAN-SIGACTSymposium on Principles of Programming Languages, pages 297{310, January 1994.[WL95] Robert P. Wilson and Monica S. Lam. E�cient context-sensitive pointer analysis for Cprograms. In SIGPLAN'95 Conference on Programming Language Design and Implemen-tation, pages 1{12, June 1995.[Zha95] Sean Zhang. Poster presentation at PLDI'95, June 1995.

