
Efficient Path Profiling

Thomas Ball
Bell Laboratories

Lucent Technologies
tball @research.bell-labs.com

Abstract

A path profile determines how many times each acyclic
path in a routine executes. This type of profiling subsumes
the more common basic block and edge profiling, which only
approximate path frequencies. Path profiles have many po-
tential uses in program performance tuning, profile-directed
compilation, and software test coverage.

This paper describes a new algorithm for path projl-
ing. This simple, fast algorithm selects andplacesprojile in-
strumentation to minimize run-time overhead. Instrumented
programs run with overhead comparable to the best previ-
ous profiling techniques. On the SPEC95 benchmarks, path
projling overhead averaged 31%, as compared to 16% for
eficient edge projiling. Path profiling also identifies longer
paths than a previous technique, which predicted paths from
edge profiles (average of 88, versus 34 instructions). More-
over; profiling shows that the SPEC95 train input datasets
covered most of the paths executed in the ref datasets.

1 Introduction

Program profiling counts occurrences of an event during
a program’s execution. Typically, the measured event is the
execution of a local portion of a program, such as a rou-
tine or line of code. Recently, fine-grain profiles-of basic
blocks and control-flow edges-have become the basis for
profile-driven compilation, which uses measured frequen-
cies to guide compilation and optimization.

*This research supported by: Wright Laboratory Avionics Directorate,
Air Force Material Command, USAF, under grant #F33615-94-l-
1525 and ARPA order no. B550; NSF NY1 Award CCR-9357779,
with support from Hewlett Packard, Sun Microsystems, and PGI;
NSF Grant MIP-9225097; and DOE Grant DE-FG02-93ER25176.
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Wright Laboratory
Avionics Directorate or the U. S. Government.

James R. Larus*
Dept. of Computer Sciences

University of Wisconsin-Madison
larus@cs.wisc.edu

Path FTofl Froa

ACDF 90 110
ACDEF 60 40
ABCDF 0 0
ABCDEF 100 100
ABDF 20 0
ABDEF 0 20

Figure 1. Example in which edge profiling does not iden-
tify the most frequently executed paths. The table con-
tains two different path profiles. Both path profiles in-
duce the same edge execution frequencies, shown by the
edge frequencies in the control-flow graph. In path profile
Profl, path ABCDEF is most frequently executed, al-
though the heuristic of following edges with the highest fre-
quency identifies path ACDEF as the most frequent.

One use of profile information is to identify heavily exe-
cuted paths (or traces) in a program [Fis81, E1185, Cha88,
YS94]. Unfortunately, basic block and edge profiles, al-
though inexpensive and widely available, do not always cor-
rectly predict frequencies of overlapping paths. Consider,
for example, the control-flow graph (CFG) in Figure 1. Each
edge in the CFG is labeled with its frequency, which nor-
mally results from dynamic profiling, but in the figure is
induced by both path profiles in the table. A commonly
used heuristic to select a heavily executed path follows the
most frequently executed edge out of a basic block [Cha88],
which identifies path ACDEF. However, in path profile
Profl, this path executed only 60 times, as compared to 90
times for path ACDF and 100 times for path ABCDEF.
In profile Prof 2, the disparity is even greater although the
edge profile is exactly the same.

This inaccuracy is usually ignored, under the assump-
tion that accurate path profiling must be far more expensive
than basic block or edge profiling. Path profiling is the ul-
timate form of control-flow profiling, as it uniquely deter-

46
1072-4451/96 $5.00 0 1996 IEEE

mines both basic block and edge profiles, although the con-
verse does not hold, as Figure 1 shows. Also, the number of
blocks or edges in a program is finite and linear in the pro-
gram’s size, but a program with loops offers an unbounded
number of potential paths. Considering only acyclic paths
bounds this set, but, in the worst case, its size is still expo-
nential in the program’s size.

This paper shows that accurate profiling is neither com-
plex nor expensive. It describes a new and efficient tech-
nique for path profiling. Our algorithm places instrumen-
tation that accurately determines dynamic execution fre-
quency of control-flow paths in a routine. The instrumen-
tation is not only simple and low-cost, but it is placed in
a way that minimizes its overhead. Remarkably, although
path profiling collects far more information than block or
edge profiling, its overhead can be lower and is usually
comparable-on the SPEC95 benchmarks, path profiling’s
average overhead is 3 1 %, while efficient edge profiling’s
overhead is 16%.

Efficient path profiling opens new possibilities for pro-
gram optimization and performance tuning. Instead of rely-
ing on heuristics, which fully predict only 38% of the ex-
ecuted acyclic paths in the SPEC95 benchmarks, profile-
driven compilers can base their decisions on accurate mea-
surements.

Another potential application of path profiling is software
test coverage, which quantifies the adequacy of a test data
set by profiling a program and reporting unexecuted state-
ments or control-flow. Few, if any, coverage tools measure
path coverage. Instead, tools rely on weaker criteria, such
as statement or control-flow edge coverage. Edge profiling
is less complete than path profiling, as shown in Figure 1,
where the two path profiles cover different sets of paths yet
induce the same edge profile. Besides an efficient algorithm
for path profiling, this paper also presents measurements that
show that most routines in a small sample of programs have
few (< 3000) potential paths, so that path coverage test-
ing could be feasible for large portions of a program. On
the other hand, the measurements also demonstrate the dif-
ficulty of developing test data sets, since the programs as a
whole executed an average of 2696 paths (249-24414), as
compared to the millions of potential paths identified by the
path profiling algorithm.

1.1 Algorithm Overview

The essential idea behind the path profiling algorithm is
to identify sets of potential paths with states, which are en-
coded as integers. Consider for a moment a routine with-
out a loop. Upon entry to the routine, all paths are possi-
ble. Taking a conditional branch narrows the set of potential
paths and corresponds to a transition to a new state. At the
routine’s exit, the final state represents the single path taken

L-h.
r=O

B
r=2 '

r=4

Ii?3
D

r+=l

E F

I Path Encoding

ACDF 0
ACDEF 1
ABCDF 2
ABCDEF 3
ABDF 4
ABDEF 5

ccnmt [x-l++

Figure 2. Path profiling instrumentation. Each path from
A to F produces a unique state in register r, which indexes
an array of counters in F.

through the routine. This paper presents an efficient algo-
rithm that:

l Numbers final states from 0. . . n - 1, where n is the
number of potential paths in a routine. With this com-
pact numbering, a final state can directly index an array
of counters.

l Places instrumentation so that transitions need not oc-
cur at every conditional branch.

l Assigns states so that transitions can be computed by
a simple arithmetic operation, without an explicit state
transition table or memory reference.

l Transforms a control-flow graph containing loops or
huge numbers of potential paths into an acyclic graph
with a limited number of paths.

Figure 2 illustrates the technique. Edges labeled by small
squares contain instrumentation, which updates the state in
register T. The loop contains six unique paths, and each one
computes a different value for T, as shown in the table. At
the end of the loop body (block F), register r holds the index
to increment an array of counters.

1.2 Extensions

The algorithm in this paper can be easily extended in sev-
eral ways. First, instead of intraprocedural profiling, it could

be applied to a program’s call graph, to record call paths. An
interesting complication is indirect calls, which require a dy-
namic data structure to record calls along edges that are not
in the call graph.

Also, instead of just counting the number of times a path
executes, the profiling algorithm can easily accumulate a
metric for a path. Some processors provide accessible coun-
ters for metrics such as the number of processor cycles,

stalls, cache misses, or page faults. A minor change to the
path profiling code could increment a path’s counter by the
change in a counter over the path.

1.3 Paper Overview

The path profiling algorithm instruments a program
to record paths with low run-time overhead. The algo-
rithm uses previous results on efficient profiling and trac-
ing [BL94] and efficient event counting [Bal94] to deter-
mine which edges to instrument. The contribution of this pa-
per is combine these algorithms, apply them to a new prob-
lem, and develop a new algorithm to compute an update con-
stant for each instrumented edge. The algorithm ensures
that each distinct path generates a unique value. Further-
more, the path encoding is compact and minimal, so that the
maximum value for any path is the number of unique paths
through a CFG (minus one), as in Figure 2. A simple, linear-
time algorithm achieves both goals (Section 3).

This paper only considers intra-procedural acyclic paths,
which result from removing loop backedges before instru-
mentation (Section 4). This process produces a profile that
does not capture paths that cross a backedge. However,
acyclic path profiling counts the number of times that a loop
iterates and records both paths into the first iteration and out
of the last loop iteration. The same approach, of removing
edges, can also limit the number of paths in complex rou-
tines, so that states can be represented as 32-bit integers.
Even so, large routines can have too many states to use an
array of counters. In this case, a hash table records paths that
actually execute, so that the space overhead is proportional
to the number of dynamic paths, rather than the number of
potential static paths. The relatively high cost of hashing
accounts for the higher overhead of path profiling, as com-
pared to edge profiling.

We implemented the algorithms presented here in a pro-
filing tool, PP, which uses the EEL library [LS95] to in-
sert instrumentation into executable binaries (Section 5).
This paper compares PP against QPT2, another profiling
tool built with EEL, which uses an efficient edge profil-
ing algorithm [BL94]. QPT2 usually incurred less over-
head, but the two system were roughly comparable. Profil-
ing the SPEC95 benchmarks, PP’s overhead averaged 3 1%
(697%) while QPT2’s overhead averaged 16% (-2.653%)
(Section 6). The measurements also compare profiled paths
against paths predicted using edge profiles and show that
for the SPEC95 benchmarks, which execute few unique
paths, profiling identifies longer paths (an average of 7 CFG
edges and 88 instructions, versus 5 edges and 34 instruc-
tions for predicted paths). Moreover, path profiling shows
that the paths executed with the SPEC95 train dataset cover
most of the dynamically executed instructions in the ref
dataset, which suggests that path profiles could help improve

A
v++

434 B C
u+t

tt+

C-AI = utv
D-s? = ttu+v-w
E-X? = w

IDI I A-S3 = ttu
m F-S = t+u+v

Figure 3. Instrumentation for edge profiling.

SPEC95 peak numbers.

2 Related Work

The path profiling algorithm, like previous work on effi-
cient profiling and tracing techniques [BL94, Go191], uses a
spanning tree to determine a minimal, low-cost set of edges
to instrument. For example, Figure 3 shows the control-
flow graph from Figure 2 instrumented for edge profiling
(the uninstrumented edges form a spanning tree). The same
set of edges are instrumented in both cases. However, for
edge profiling, each instrumented edge has its own counter
(held in memory), which is incremented each time the edge
executes. Figure 3 also shows how uninstrumented edges’
counts are derived from recorded counts.

Path profiling produces a more detailed profile, although
it instruments the same set of edges. Moreover, most
path profiling instrumentation consists of register instruc-
tions, while every edge profiling instrumentation increments
memory. In general, a path that executes N memory incre-
ments for edge profiling will execute N register initializa-
tions/adds plus one memory increment for path profiling. In
practice, there are many procedures for which the number
of potential paths is small (so arrays may be used) and path
profiling incurs less overhead than edge profiling. However,
there are procedures that have so many potential paths that
a hash table must be used to store the profile.

Young and Smith used a limited form of program tracing
to record paths for their branch correlation studies [YS94].
In a FIFO buffer, they recorded the last n branches, each of
which consists of a basic block number and branch outcome.
This technique is both more expensive than path profiling
and also requires another level of indirection to associate a
counter with a path, which consists of a sequence of block
numbers. Unlike path profiling, this technique need not dis-
tinguish cyclic from acyclic paths since it truncates both at
the FIFO boundary.

Bit tracing is another approach to path profiling. Bit trac-
ing associates a l-bit value with the outcome of each two-

48

A
0

B C
2

$3
4

D

1

E F

A
4

B C
-2

B
0

D

1

E F

A
5 1

B C
-2

33 D
-1

E F

b) Cb) (c)

Figure 4. Three possible placements of instrumentation
for the control-flow graph from Figure 1.

way branch [BL94, Bal96]. When a branch executes, instru-
mentation code appends a bit to a trace buffer that records
branch outcomes. By recording multiple bits, the approach
can be extended to multi-way branches. The contents of the
buffer form an index into an array or as a hash value.

It is easy to see that bit tracing uses the minimal number
of bits necessary to distinguish paths. For simple control-
flow graphs, such as a chain of if-then-else statements, bit
tracing, like our approach, produces a compact represen-
tations of paths. However, in general, bit tracing may not
yield the most compact representations of paths possible. It
is easy to construct examples for which the maximal path
value under bit tracing is not minimal, no matter the choice
of bit labellings. In the worst case, the number of entries in
an array of counters may be twice our method.

In addition, bit tracing is likely to have higher run-time
overhead than our approach. First, every predicate must
be instrumented, whereas our approach allows flexibility
in placing instrumentation to reduce overhead. Second, on
most machines, the instrumentation to append to a bit string
is more complex and slower than a register-to-register addi-
tion.

3 Path Profiling of DAGs

As described previously, path profiling tracks a path in a
directed acyclic graph (DAG) by updating a register along
certain edges of the DAG. This section shows how to com-
pute the necessary updates, efficiently place instrumenta-
tion, and derive an executed path from the resulting profile.

The example in Figure 4 shows that many placements
of instrumentation yield equivalent results. However, some
placements incur less run-time overhead than others. For
example, all three graphs in Figure 4 produce the same sum
along any acyclic path from A to F. However, in graph (a),
the largest number of instrumented edges on any path from
A to F is two, while graphs (b) and (c) have up to four and
three, respectively.

The path profiling algorithm first labels edges in a DAG

with integer values, such that each path from the entry to the
exit of the DAG produces a unique sum of the edge values
along that path (the path sum). However, placements from
this step may have sub-optimal run-time overhead, as above.

In the next step, another algorithm [Bal94] improves this
computation, by finding an equivalent computation that uses
a minimal number of additions along DAG edges that are not
in the DAG’s spanning tree. In each graph in Figure 4, the
uninstrumented edges (those without squares along them)
form a spanning tree. Since a DAG may have many span-
ning trees, the algorithm has the freedom to place instrumen-
tation along edges less likely to be executed.’

After reviewing the basic graph terminology in Sec-
tion 3.1, this section describes the four basic steps to path
profile a DAG:

1.

2.

3.

4.

3.1

Assign integer values to edges such that no two paths
compute the same path sum (Section 3.2). This encod-
ing is minimal.

Use a spanning tree to select edges to instrument and
compute the appropriate increment for each instru-
mented edge (Section 3.3).

Select appropriate instrumentation (Section 3.4).

After collecting the run-time profile, derive the exe-
cuted paths (Section 3.5).

Terminology

For the remainder of this paper, unless otherwise noted,
control-flow graphs (CFGs) have been converted into di-
rected acyclic graphs (DAG) with a unique source vertex
ENTRY and sink vertex EXIT. Section 4 shows how
to transform an arbitrary CFG into a DAG, which can be
path profiled. For technical reasons, the increment compu-
tation (Section 3.3) requires a “dummy” edge EXIT +
ENTRY (although this creates an unexecutable cycle,
the graph can still be treated as a DAG by ignoring this
backedge).

An execution of a DAG produces an acyclic, directed
path starting at ENTRY and ending at EXIT. The term
path refers to an acyclic directed path, unless otherwise
noted. Of course, a DAG may execute many times, as it may
consist of a loop body or a procedure.

A spanning tree of a graph G is a subgraph that is a tree
and contains all vertices of G. Edges in a spanning tree
are bidirectional and need not follow the direction of graph

‘This approach requires computing (or obtaining from a profile) a
weight for each edge that statically approximates the edge’s execution fre-
quency. A maximum spanning tree of the graph, with respect to that
weighting, maximizes the weight (execution frequency) of the uninstm-
mented edges. PP uses the same previously published, effective algorithm
for statically computing a weighting as QPT [BL94].

49

____ ---_ .-- --__ . --- --”
if v is a leaf vertex

A

NumPaths(v) = 1; 2 0

) else { 3: I3 0 c
vertex v maths W

NumPaths(v) = 0; 6
for each edge e = v->w C 2 4

Val (e) = NumPathsCv);
0 2

NumPaths(v) = NumPathsCv) + NumPathsCw);
n

LEJ
2
.

Figure 5. Algorithm for assigning values to edges in a
DAG.

edges. If T is the set of spanning tree edges, then any graph
edge not in T is a chord of the spanning tree.

For example, in the graph of Figure 2, vertex A is the
ENTRY vertex and vertex F is the EXIT vertex. The un-
adorned graph edges comprise a spanning tree. The edges
labeled by squares are chords of the spanning tree.

3.2 Compactly Representing Paths with Sums

The first step in path profiling is to assign a non-negative
constant value VaZ(e) to each edge e in a DAG, such that
the sum of values along any path from ENTRY to EXIT
is unique. Furthermore, the path sums should lie in the range
from 0 to the number of paths (minus one), so that the encod-
ing is minimal.

The algorithm in Figure 5 computes such a VaZ relation
by visiting vertices of the DAG in reverse topological or-
der. This order ensures that all the successors of a vertex
ZJ are visited before ‘u itself. Associated with each vertex
v is a value NumPaths(v), which records the number of
paths from u to EXIT. The algorithm is simple. At ver-
tex v, the algorithm visits all of v’s outgoing edges v + wi,
1 < i 5 n, and assigns the lath outgoing edge the value:

Val(v + wk) = Cti; NumPaths(wi)

The following theorem proves the algorithm correct:

Theorem 1 Given a DAG, after the algorithm of Figure 5
visits vertex u, NumPaths(v) is the number of paths from
u to EXIT and each path from v to EXIT generates a
unique value sum in the range 0.. . NumPaths(v) - 1.

Proof. By induction on the height of a vertex in the DAG
(i.e., the max number of steps to the sink vertex EXIT).

Base Case: v has height equal to zero (that is, v =
EXIT), so NumPaths(v) = 1. The theorem is trivially
satisfied.

Figure 6. Control-flow graph from Figure 1, with values
computed by the algorithm in Figure 5.

Induction Step: Show that the theorem holds for
any vertex v of height H (H > 0). All successors
~1 . . . W, of v must have height less than H (because
the graph is a DAG), so the theorem holds for all WJ~.
It is trivial to see that the number of paths from v to
EXIT is Cy=‘=, NumPaths(wi), which the algo-
rithm computes. By the induction hypothesis, each
path from Wk to EXIT generates a unique value
sum in the range 0. . . NumPaths(wk) - 1. There-
fore, any path from v to EXIT starting with edge
v -+ wk will generate a unique value in the range
C;“-i’ NumPaths(w;) . . . (CF=, NumPaths(wi)) - 1.
Since all NumPaths(wi) values are greater than 0, it
follows that no two paths from v to EXIT generate the
same value sum. 0

Figure 6 illustrates how the algorithm operates on the ex-
ample control-flow graph. Note that vertices are labeled in
topological ordering, so FEDCBA is a reverse topological
order. Any vertex with a single outgoing edge e, such as C
and E, always has VaZ(e) = 0.

3.3 Efficiently Computing Sums

Given an edge value assignment, the second step of
the algorithm finds a minimal cost set-with respect to a
weighting (Section 3)-of edges along which to compute
these values, while preserving the two properties of the
value assignment.

This step of the algorithm finds a maximal cost spanning
tree of the graph (to find a minimal cost set of chord edges),
and applies an efficient event counting technique [Ba194] to
determine the increment Inc(c) for each chord c in a span-
ning tree. The event counting algorithm ensures that the sum
of Inc values for any path P from ENTRY to EXIT is
identical to the sum of Val values for P. Note that some of
the Inc values may be negative, as in Figure 4. The edge
EXIT -+ ENTRY is required for this step (if this edge is

50

j$sJQB
F

Inc(B->D) = Vd (A->B) + Val (B-SO + Val (D->F) + Val (F-4
= 2+2+0+0
=4

Figure 7. Application of event counting algorithm to de-
termine chord increments.

selected as a chord, then its instrumentation can be placed in
the EXIT vertex).

Figure 7 shows how the event counting algorithm applies
to the example control-flow graph. The graph on the left
contains the value assignment and the chord edges (those
with squares along them). The graph in the middle shows
the unique cycle of spanning tree edges associated with
chord B -+ D. The values along edges in this cycle deter-
mine the increment for chord B -+ D, which in this case is
four. Informally, the algorithm propagates the value of two
from edge A -+ B to the chord B + D. The graph on the
right contains increments for all chords. Each path from A
to F in this graph yields the same path sum as in the graph
on the left.

3.4 Instrumentation

After computing chord increments, the algorithm selects
instrumentation. Of course, at the start of a program’s exe-
cution, the array of counters must be allocated and initialized
to 0. At program termination, this array is written to perma-
nent storage.

Besides this prelude and postlude instrumentation, the re-
maining instrumentation has three tasks: initializing path
register r [r = 0] in the ENTRY vertex; updating r in
chord c [r += Inc (c) 1; and incrementing a path’s mem-
ory counter in the EXIT vertex [count [rl ++I. How-
ever, in many cases, an optimization can combine updates
with the other two operations, as shown in Figure 2.

The optimization for initialization is:

(1) A chord c may initialize the path register
[r=Inc (c)] if and only if c is the first chord in
every path from ENTRY to EXIT containing
C.

If there exists a path in which chord c is the first chord and
another path in which c is not the first chord, then chord c

must update rather than initialize r. However, in this case,
moving the initialization [r=O] as close to c as possible
avoids redundant initialization of r.

A similar optimization works for counter increments:

(2) A chord c may increment the path register
and memory counter [count[r+Inc(c)]++]
if and only if c is the last chord in every path from
ENTRY to EXIT containing c.

This optimization can fold an addition into a memory ad-
dress calculation.

If a chord c contains initialization as well as a
counter increment, the instrumentation simply becomes
count[Inc(c)]++.

The algorithm in Figure 8 places instrumentation prop-
erly. The first while loop moves initialization code to chord
edges when possible, and otherwise moves it far enough
from the ENTRY vertex so that no initialization is redun-
dant. The second loop places the memory increment code.
The invariant of the first loop is that for each vertex w added
to the working set, there is only one path from ENTRY to
w in the DAG and this path contains no chords. Note that
if there are two paths from ENTRY to a vertex w, one of
these paths must contain a chord, so any chord encountered
from w onward cannot satisfy this condition. A similar in-
variant is maintained by the second while loop.

Figure 9 shows the instrumentation for the control-flow
graph from Figure 1. Note that edges A -+ C, B -+ C
and B + D now initialize register r, eliminating the need
to initialize r at vertex A. Furthermore, the update along
edge D + E has been combined with the counter increment
code. However, notice that a counter increment is required
along edge D + E as well.

3.5 Regenerating a Path

To recreate a path profile from the path counters recorded
at run time, it is necessary to map from the integer represent-
ing a path to the path itself. This is done using the value as-
signment computed previously (Section 3.2).

The regeneration algorithm is straight forward. Regen-
eration starts from a control flow graph’s ENTRY node
and traverses the graph, using the path value to select which
edge to follow out of a basic block. Let r~ be a vertex in
the reconstructed path and let R be the path value. Initially,
w = ENTRY and R is the number of the path to regener-
ate. At each block, find e = v + w, which is the outgoing
edge of ‘u with the hugest V&(e) 5 R. As the path traverses
edge e, let u = w and R = R - Val(e). Repeat this process
until control reaches the EXIT vertex.

For example, consider the control-flow graph in Figure 6.
Suppose that the initial path value R is 3. At vertex A, the
algorithm will choose edge A -+ B and decrement R by 2.

51

// Register initialization code
//
WS.add(ENTRY);
while not WS.emptyO {

vertex v = WS.removeO;
for each edge e = v->w

if e is a chord edge
instrumentce, 'r=Inc(e)');

else if e is the only incoming edge of w
WS.add(w);

else instrumentte, 'r=O');

// Memory increment code

WS.add(EXIT)

Figure 9. Optimization of instrumentation for the control-
flow graph of Figure 1.

while not WS.emptyO {
vertex w = WS.removeO;
for each edge e = v->w

if e is a chord edge I
if e's instrumentation is 'r=Inc(e)'

instrumentce, 'count[Inc(e)l++');
else

instrumentte, 'count[r+Inc(e)l++');

4 Path Profiling of Arbitrary Control-Flow

This section extends path profiling to arbitrary control-
flow graphs that contain cycles (including irreducible
loops). Any cycle in a control-flow graph must contain a

} else if e is the only outgoing edge of v backedge (as identified by a depth-first search of the graph).
WS.add(v); The algorithm in Section 3 only works for acyclic paths,

else instrumentce, 'count[rl++'); which correspond to backedge-free paths.
Our approach to handling general CFGs instruments each

backedge with a path counter increment and path register
initialization [count [r] ++; r = 01, which records the
path up to the backedge and prepares to record the path after
the backedge.

// Register increment code
//
for all uninstrumented chords c

instrument(c,'r+=Inc(c)')

Figure 8. Algorithm for placing instrumentation.

At vertex B, R = 1, so the algorithm traverses edge B + C
and then C + D. At vertex D, R still has a value of 1, so
the path traverses edge D -+ E, followed by E + F. The
resulting regenerated path is ABCDEF, which is the path
that generates the path sum 3.

3.6 Early Termination

Like other efficient profiling algorithms [BL94], path
profiling requires extra information to derive correct profiles
for routines that terminate unexpectedly because of excep-
tions, unrecognized non-local gotos, or calls to exit. This in-
formation consists of the address of unterminated calls and
can easily be obtained from a program’s stack at an unex-
pected event. The event counting algorithm provides a way
to correctly update the counters in these routines [Ba194].

anmt[r

Suppose that v + w and x -+ y are backedges. A gen-
eral CFG contains four possible types of acyclic (backedge-
free) paths:

l A path from ENTRY to EXIT.

l A path from ENTRY to V, ending with execution of
backedge v -+ w.

l A path from w to x (after execution of backedge v +
w), ending with execution of backedge x + y (note:
v --+ w and z + y may be the same edge).

l After executing backedge v -+ w, a path from w to
EXIT.

Removing all backedges from a control-flow graph pro-
duces a DAG (as defined in Section 3.1). However, simply
applying the profiling algorithm from Section 3 to this DAG
will not correctly distinguish the above four types of paths.
Figure 10(a) contains a control-flow graph with a loop con-
sisting of the vertices B, C, D, and E. Suppose the graph
is instrumented by eliminating the backedge E + B, thus
yielding a DAG, and applying the path profiling algorithm
for DAGs. The resulting assignment does not ensure that
different paths yield different paths sums. For example, the

52

r=O A
2

;,

B
4

B
C D

E
X=00;

F colmt[rlte
1

G H

w camtkl*
(a)

Path mthsnl

AFGI 0
AFHI 1
AEcER=[2
ABcEFHI3
ABCEFGI 5
AKEE-II 6
ABCE 4
ABDE 7
BCE 10
BDE l3
BCEFGI 8
BCEFHI 9
BDEFGI II
BDEFHI I2

Figure IO. Control-flow graph with a loop.

paths BCE, ABCE, BCEFGI and ABCEFGI all com-
pute the identical path sum of 2. Not surprisingly, only paths
that start at ENTRY = A and end at EXIT = I are cor-
rectly distinguished.

The solution to this problem consists of three steps:

l For each vertex v that is the target of one or more
backedges, add a dummy edge ENTRY + v. For
each vertex w that is the source of one (or more)
backedges, add a dummy edge w -+ EXIT. If one
of these edges is not in the spanning tree, it will be in-
strumented, which is efficient as the edge’s increment
can be combined with the code always added to a loop
backedge to record a path.

l Eliminate backedges from the graph (except for the
edge EXIT + ENTRY, which was added for in-
crement computation).

l Apply the first two steps of the path profiling algorithm
(Section 3) to compute a value assignment and chord
increments.

The dummy edges create extra paths from ENTRY to
EXIT, which the value assignment algorithm takes into ac-
count. The dummy edge from ENTRY to a loop head cor-
responds to reinitializing the path register along the loop’s
backedge. The dummy edge from the loop’s bottom to
EXIT corresponds to incrementing the path counter along
the backedge.

Figure IO(b) shows the graph after this transformation
and edge value assignment. Dummy edges are the thicker
edges. As a result, the chord increments correctly distin-
guish the four classes of paths listed above. Figure 10(c),
shows the chord increments computed and the path sum for
each possible path through the graph.

Path regeneration must follow the first two steps (adding
dummy edges and removing backedges) to compute the
same value assignment, before using the regeneration algo-
rithm from Section 3.5 on the resulting graph.

4.1 Self Loops

The approach described must be slightly modified to han-
dle self-loop edges, which are backedges with the same
source and target vertex. Removing this edge does not leave
any edge in the loop to instrument. These edges can be han-
dled specially, by adding a counter along them to record
the number of times they execute, rather than instrumenting
themwiththecode [count[rl++; r = 01.

5 Implementation

We implemented the algorithms described previously in
a tool called PP, which instruments SPARC binary executa-
bles to extract path profiles. PP is built on EEL (Executable
Editing Library), which is a C++ library that hides much
of the complexity and system-specific detail of editing ex-
ecutables [LS95]. EEL provides abstractions that allow a
tool to analyze and modify binary executables without be-
ing concerned with particular instruction sets, executable
file formats, or the consequences of deleting existing code
and adding foreign code (i.e., instrumentation).

5.1 Registers

Path profiling requires a local register throughout each
routine’s execution to hold the current path and a temporary
register for some instrumentation code, such as the mem-
ory increment code. EEL scavenges free registers by us-
ing dataflow analysis to find the dead registers throughout a
control-flow graph. If EEL cannot find an unused local reg-
ister, it frees the least heavily used local register by spilling it
to the routine’s stack frame. In most routines, EEL found un-
used local registers, although many larger and computation-
ally intensive routines require spill code. The SPARC’s reg-

53

ister windows ensure that all local registers are caller saved.
Other architectures would need to save the path register be-
fore and after calls.

EEL also provides a facility to add procedure calls at arbi-
trary points in a routine. PP uses this feature, which relies on
program analysis to save only live values, to call the hashing
code (see Section 5.3).

5.2 Optimizations

A simple strength-reduction optimization saves two in-
structions per path by having the path register hold a
counter’s address, instead of its index. PP initializes a path
register to the base of the counter array. Each increment adds
its update, scaled by the size of a counter (4 bytes). This
optimization saves three instructions in the code that incre-
ments a path’s counter, at the cost of an additional instruc-
tion in the code that initializes the path register. Unfortu-
nately, the optimization reduces the range of increments that
fit in an instruction’s immediate field. Since the SPARC’s
immediate field is 13 bits, this optimization is limited to
routines in which the largest increment is 1023 (rather than
4095). However, most routines have fewer or far more
paths.

Moreover, a simple change can reduce the range of in-
crements in a routine. The algorithm in Figure 5 can visit
a node’s successors in any order. By visiting the successor
with the largest number of paths (NumPath) last, the value
(Val) assigned to the last edge is minimized, and hence so
are the increments added at run time.

5.3 Routines with Many Paths

PP employs two techniques to handle routines with a
large number of paths. The first, which PP applies to any
routine in which an increment is larger than an instruction’s
immediate field, replaces the array of counters with a hash
table. On the SPARC, this means that routines with more
than 4000-6000 paths require hash tables. Hash tables have
the advantage of requiring space proportional to the number
of executed paths, but have the disadvantage of being an or-
der of magnitude more costly than a simple memory incre-
ment and forcing a function call in awkward places. This
technique limits counter space for a routine to roughly 16K
bytes (most routines require far less space). PP uses two
hash routines. The one called from loop backedges keeps
a pointer to the last path and hash bucket, so that repeated
lookups of the same path are very fast. This is very bene-
ficial since procedures often spend their time in tight loops,
repeating the same path over and over.

PP’s other technique is necessary for very complex rou-
tines in which the number of possible paths exceeded the
range of a 32 bit integer. In these routines, PP terminates

the value computation (Section 3.2) when the number of
paths reachable from a node exceeded a threshold (currently
100,000,000). At this point, PP removes all outgoing edges
from the node-using the same approach to terminate these
paths as for loop backedges (Section 4)--and reruns the
value computation. The only information lost was the rela-
tion of the path before a cut edge with the path after the cut
edge. Larger (64 bit) words would alleviate, though proba-
bly not eliminate, the need to truncate paths.

6 Experimental Results

This section uses the SPEC95 benchmarks to compare
path profiling (PP) against edge profiling (QPT2), which has
the lowest overhead of conventional profiling techniques
[BL94]. The programs ran stand-alone on a Sun Ultra-
server E5000-167Mhz UltraSPARC processors and 2GB of
memory-running Solaris 2.5.1 with a local file system. Ta-
ble 1 presents measurements of the SPEC95 benchmarks us-
ing the ref input data.2 C benchmarks were compiled with
gee (version 2.7.1) and Fortran benchmarks were compiled
with Sun’s f77 (version 3.0.1). Both compilers used only the
-0 option.

PP’s overhead (across all input files) averaged 30.9%
(5.5-96.9%) and QPT2’s overhead averaged 16.1% (-2.6-
52.8%). PP’s overhead averaged 2.8 times QPT2’s over-
head (0.7-14.5). PP’s overhead is explained in part by the
final two columns in Table 1, which report the fraction of
path increments that required hashing and the average num-
ber of instructions between increments. However, the table
does not report the cache interference caused by profiling
code and data. In general, programs with little hashing (e.g.,
compress, li, ijpeg, turb3d) have PP overhead comparable
or lower than QPT2. Programs with considerable hashing
(e.g., tomcatv, fpppp, and wave5) can still have low over-
heads if blocks are large or paths are long and path incre-
ments execute infrequently.

Table 2 reports some characteristics of the program’s
acyclic paths. In all programs, the number of executed
paths was small (fewer than 2300 in all except 099.go and
126.gcc) and is dwarfed by the potential paths-which num-
ber hundreds of millions to tens of billions, even after path
truncation.

The table also reports the length of the longest and av-
erage acyclic paths. Not surprisingly, the weighted num-
ber of instructions in a path in the CFP95 benchmarks, 9 1.7
(43.1-636.0), is significantly longer than CINT95 bench-
marks, 21.4 (15.1-33.2). More aggressive compiler opti-
mizations would further increase these numbers by loop un-
rolling and procedure in-lining.

2Since PP measures a single process’s execution, the tables report pro-
gram behavior for each benchmark’s last input file.

54

Inc
Benchmark Base PP OPT-2 PPI Path Wze Hashed Inst/

Time Overhead Overhead QPT Inc 1nc Inc
bed % % (million) (x Path) %

099.go 885.0 53.4 24.1 2.2 1002.4 1.5 27.7
124.m88ksim 571.0 35.6 18.7 1.9 4824.9 1.2 3.9
126.gcc 322.0 96.9 52.8 1.8 9.4 1.7 16.8
129compress 351.0 19.4 21.9 0.9 3015.7 1.5 0.0
13O.li 480.0 25.4 26.7 1.0 3282.4 1.4 1.2
132.ijpeg 749.0 17.4 16.3 1.1 1164.9 1.1 1.2
134.perl 332.0 72.9 51.5 1.4 1133.0 1.9 23.4
147.vortex 684.0 37.7 34.1 1.1 3576.3 1.5 23.7
CINT95 Avg: 44.8 30.8 1.4 22251.1 1.5 12.2
lOl.tomcatv 503.0 19.9 2.8 7.1 574.6 1.1 95.8
102swim 691.0 8.4 0.6 14.5 163.4 1.0 0.2
103.su2cor 465.0 10.1 5.8 1.7 558. I 1.2 21.5
lO4.hydro2d 811.0 37.7 5.8 6.5 1690.7 1.7 77.8
107.mgrid 872.0 6.3 3.2 2.0 1035.2 1.0 7.7
1 lO.applu 715.0 71.0 12.0 5.9 2111.4 1.1 99.1
125.turb3d 1066.0 5.5 7.4 0.7 2952.8 1.1 0.0
14l.apsi 492.0 7.7 1.8 4.2 599.3 1.1 3.5
l45.fPPPP 1927.0 14.6 -2.6 -5.6 395.0 1.8 42.5
146.wave5 620.0 16.9 6.1 2.8 737.3 1.3 65.0
CFP95 Avg: 19.8 4.3 4.0 1081.8 1.2 41.3

C Average: 30.9 16.1 2.8 1601.5 1.3 28.4

33.2
16.2
15.1
16.6
16.8
31.0
22.2
20.3
21.4
93.0

162.9
92.8
43.1

133.5
44.8
56.5
84.0

636.0
74.1

142.1
88.4

Table 1. Comparison of path profiling (PP) against Ball-Larus edge profiling (QF’T2). Base Time is elapsed time of uninstrumented
program with the ref dataset. Overhead is the increase in execution time due to profiling. PWQP7’2 is the ratio of the overheads. The
remaining numbers report a program’s behavior on its last input file. Path Inc is the number of increments of path counters. Edge
Inc is the ratio of edge profiling increments to path increments. Hash Inc is the fraction of path increments that required hashing.
Inst/Inc is the average number of instructions between increments.

Benchmark

099.go
124.m88ksim
126.gcc
129.compress
13O.li
132.ijpeg
134.perl
147.vortex
CINT Avg:

101 .tomcatv
102,swim
103.su2cor
104.hydro2d
107.mgrid
1 lO.applu
125.turb3d
141 .apsi
145fPPPP
146.wave5
CFP Avg:

Average:

Path
24414

1113
9319
249
770

1199
1421
2223
5088
421
378
905

1456
589
619
674

1064
821
896
782

2696

Path Profile
Longest Avg

Ehze 1nst Edge 1nst
105 314 10.9 33.2
138 360 5.8 16.2
711 1074 7.4 15.1
80 146 6.5 16.7

153 252 9.0 16.8
139 416 7.0 31.0
123 305 10.7 22.2
584 841 8.9 20.3
254 464 8.3 21.4
83 326 4.1 93.0

106 310 2.3 162.9
136 954 6.7 92.8
344 488 6.5 43.1
83 320 2.3 133.5

240 3557 3.7 44.8
162 692 7.1 56.5
712 1196 6.1 84.0
85 11455 14.9 636.0
90 1180 5.2 74.1

204 2048 5.9 142.1
226 1344 6.9 88.4

Edge Profile Paths
%

correct
4.3

29.8
20.8
43.0
38.1
36.4
24.5
39.5
29.5
49.6
57.1
45.9
33.2
44.8
54.1
46.6
40.8
25.8
47.8
44.6
37.9

Longest
JQbe 1nst

84 252
138 360
711 1074
80 146
62 109

139 202
115 207

Avg
Edge 1nst

5.0 19.3
4.3 9.1
4.6 10.5
4.6 8.8
7.0 14.6
5.1 22.2
7.3 16.7

584 841 8.5 13.6 627 65 3.5
239 399 5.8 14.4 381 286 12.0

82 201 3.9 25.2 146 56 2.9
106 310 2.2 57.6
73 781 5.5 59.3

344 436 5.8 36.2
78 320 2.1 15.8

240 3557 2.4 26.6
162 692 5.1 28.2
136 734 4.6 69.0
76 11455 9.0 122.6
90 1180 4.8 49.5

139 1967 4.5 49.0
183 1270 5.1 33.6

T Routines
Exec Max Avg

Path Path
407 1574 60.0
220 70 5.1

1027 163 9.1
69 34 3.6

216 64 3.6
252 194 4.8
233 125 6.1

143 25 2.6
209 127 4.3
227 434 6.4
160 73 3.7
144 82 4.3
189 39 3.6
242 54 4.4
143 322 5.7
212 69 4.2
182 128 4.2
270 198 7.7

Table 2. Characteristics of executed acyclic paths. Paths are from the last input file in the ref dataset. Num Paths is the number of
paths executed. Longest is the longest executed path. Avg is the average path length, weighted by execution frequency. % Correct is
the fraction of paths predicted entirely correctly by edge profiling. Statistics on edge-predicted paths are up to the first misprediction.
The final columns report the executed routines, and maximum and average number of paths per executed routine.

55

099.go
124.m88ksim
126gcc
129compress
l3O.li
132.ijpeg
134.perl
147.vortex
101 .tomcatv
102.swim
103su2cor
104.hydrofd
107.mgrid
1 lO.applu
125.turb3d
14l.apsi
l45.fPPPP
146.wave

Benchmark Common Paths Common Instructions
Number Static Dynamic

13670 52.8% 99.5%
800 71.1% 97.1%

9058 63.5% 94.6%
201 78.2% 99.2%
522 67.8% 87.4%

1099 85.3% 99.9%
687 41.8% 71.9%

2160 96.0% 100.0%
418 90.9% 100.0%
373 98.2%
880 95.5%

1336 90.1%
577 97.3%
582 87.5%
651 94.5%
992 91.0%
764 91.9%

5821 88.5%

100.0%
100.0%
lOQ.01
100.0%
100.0%
100.0%
91.2%
99.9%
98.8%

Number Dynamic
32823357655 98.6%
68794935104 93.3%

140747413 88.9%
49206874856 98.0%
48285966561 87.7%
36098785257 100.0%
16041579783 63.8%
72589443060 100.0%
53422202701 100.0%
26607743709 100.0%
51766673091 100.0%
72892099182 100.0%

138157253535 100.0%
94622106074 100.0%

166724577396 100.0%
37648860455 74.3%

250229811735 99.6%
52996842799 96.9%

Table 3. Comparison of paths with the SPEC95 ref and train input datasets. Common Paths reports the number of paths executed
for both input datasets. Static is the fraction of executed ref dataset paths executed by the train dataset. Dynamic is this fraction,
weighted by execution frequency. Common Instructions reports the number and fraction of instructions along common paths.

The table also compares paths predicted using edge pro-
filing against measured paths. For this experiment, PP fol-
lowed each executed path, starting at a function entry or loop
head, and used the most frequently executed edge out of a
block to predict the next step in a path. If two edges had the
same frequency, PP followed the not taken edge. This ap-
proach predicts, in their entirety, an average of 37.9% (4.3-
57.1%) of the paths. PP also computed the length of a pre-
dicted path, up to their first mispredicted edge. Weighted
by execution frequency, edge predicted paths were nearly as
long as measured paths (5.1 versus 6.9 CFG edges), but con-
tained significantly fewer (33.6 versus 88.4) instructions. In
part, this result reflects the simple behavior of the SPEC95
benchmarks, which execute an average of 7.7 (2.6-60.0)
paths in each routine. It is also consistent with previous
work in dynamic and static branch prediction [FF92, BL93],
which found that branches in a program typically follow
one direction with very high probability, and this high-
probability direction generally remains the same for differ-
ent inputs.

Table 3 compares paths executed with the SPEC95 train

and ref input datasets. In the CINT benchmarks, the train

dataset identified 41.8-96.0% of the paths executed in the
ref dataset. However, these common paths were the im-
portant ones that account for 71.9-100.0% of path execu-
tions and 63.8-100.0% of instruction executions. The CFP
benchmarks were even more striking, as the train dataset
identified a minimum of 87.5% of the executed paths, which
in all except one case (147.apsi) account for 99+% of in-
structions. This result is again consistent with earlier work

that found program behavior to be independent of program
data [FF92, BL93]. These measurements suggest that path
profiles could greatly improve peak SPEC95 performance
by providing an inexpensive and accurate basis for profile-
driven compilation.

7 Summary

This paper describes a new algorithm for path profiling.
A path profile records the execution frequencies of acyclic
paths in a routine. Although these profiles provide far more
information than basic block or edge profiles, they can be
obtained at a cost comparable to the best known profiling al-
gorithms.

We also compared path profiles against paths predicted
by a common heuristic that selects the highest frequency
edge out of a basic block. Path profiles yielded slightly
longer paths that contained significantly more instructions.
If edge profiling was significantly cheaper or easier than
path profiling, it might be a reasonable heuristic. However,
since path profiling is similar in cost and complexity to edge
profiling, there is little reason to forgo the benefits of mea-
surement.

Moreover, path profiles obtained from short runs on
short, training datasets covered most of the paths and in-
structions found in full runs. The profiles from these short
runs form an inexpensive and accurate basis for profile-
driven compilation.

56

Acknowledgements

Many thanks to Vasanth Bala for helpful discussions
about path profiling. Chris Lukas and David Wood provided
helpful comments on this paper.

References

[Bal94] Thomas Ball. Efficiently counting program events with support
for on-line queries. ACM Transactions on Programming Lan-
guages ond Systems, 16(5): 1399-1410, September 1994.

[Bal96] Vasanth Bala. Low overhead path profiling. Technical report,
Hewlett Packard Labs, 1996.

[BL93] Thomas Ball and James R. Lams. Branch prediction for free. In
Proceedings of the SIGPLAN ‘93 Conference on Programming
Language Design and Implementation (PLDI), pages 3w3 13,
June 1993.

[BL94] Thomas Ball and James R. Lams. OptimaBy profiling and tracing
programs. ACM Transactions on Programming Languages and
Systems, 16(4):1319-1360, July 1994.

[Cha88] Pohua P. Chang. Trace selection for compiling large C applica- -

[El1851

FFF921

[FisS l]

[Go1911

[LS95]

[YS94]

tion programs to microcode. In 21th Annual Workshop on Micro-
programming and Microarchitecture (MICRO 21). pages 21-29.
November 1988.

John R. Ellis. Bulldog: A compiler for VLIW architectures.
Technical Report YALEU/DCS/RR-364, Yale University, De-
partment of Computer Science, February 1985.

Joseph A. Fisher and Stefan M. Freudenberger. Predicting con-
ditional branch directions from previous runs of a program. In
Proceedings of the Ftfih International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS V), pages 85-95, October 1992.

Joseph A. Fisher. Trace scheduling: A technique for global
microcode compaction. IEEE Transactions on Compufers, C-
30(7):478-490, July 198 1.

Aaron Goldberg. Reducing overhead in counter-based execution
profiling. Technical Report CSL-TR-91-495, Computer System
Laboratory, Stanford University, October 199 1.

James R. Lams and Eric Schnarr. EEL: Machine-independent ex-
ecutable editing. In Proceedings of the SIGPLAN ‘95 Conference
on Programming Language Design and Implementation (PLDI),
pages 291-300, June 1995.

Cliff Young and Michael D. Smith. Improving the accuracy of
static branch prediction using branch correlation. In Proceedings
of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS
VI), pages 232-241, October 1994.

57

