
Finding User/Kernel Pointer Bugs With Type Inference

Rob Johnson David Wagner
University of California at Berkeley

Abstract

Today’s operating systems struggle with vulnerabil-
ities from careless handling of user space pointers.
User/kernel pointer bugs have serious consequences for
security: a malicious user could exploit a user/kernel
pointer bug to gain elevated privileges, read sensitive
data, or crash the system. We show how to detect
user/kernel pointer bugs using type-qualifier inference,
and we apply this method to the Linux kernel using
CQUAL , a type-qualifier inference tool. We extend the
basic type-inference capabilities of CQUAL to support
context-sensitivity and greater precision when analyz-
ing structures so that CQUAL requires fewer annota-
tions and generates fewer false positives. With these
enhancements, we were able to use CQUAL to find 17
exploitable user/kernel pointer bugs in the Linux kernel.
Several of the bugs we found were missed by careful
hand audits, other program analysis tools, or both.

1 Introduction

Security critical programs must handle data from un-
trusted sources, and mishandling of this data can lead
to security vulnerabilities. Safe data-management is par-
ticularly crucial in operating systems, where a single bug
can expose the entire system to attack. Pointers passed
as arguments to system calls are a common type of un-
trusted data in OS kernels and have been the cause of
many security vulnerabilities. Such user pointers oc-
cur in many system calls, including, for example,read,
write, ioctl, andstatfs. These user pointers must
be handled very carefully: since the user program and
operating system kernel reside in conceptually differ-
ent address spaces, the kernel must not directly derefer-
ence pointers passed from user space, otherwise security
holes can result. By exploiting a user/kernel bug, a ma-
licious user could take control of the operating system
by overwriting kernel data structures, read sensitive data
out of kernel memory, or simply crash the machine by
corrupting kernel data.

Kernel version Bugs found

Linux 2.4.20 11
Linux 2.4.23 10

Table 1: User/kernel bugs found by CQUAL . Each of
these bugs represents an exploitable security vulnerabil-
ity. Four bugs were common to both 2.4.20 and 2.4.23,
for a total of 17 unique bugs. Eight of the bugs in Linux
2.4.23 were also in Linux 2.5.63.

User/kernel pointer bugs are unfortunately all too com-
mon. In an attempt to avoid these bugs, the Linux pro-
grammers have created several easy-to-use functions for
accessing user pointers. As long as programmers use
these functions correctly, the kernel is safe. Unfortu-
nately, almost every device driver must use these func-
tions, creating thousands of opportunities for error, and
as a result, user/kernel pointer bugs are endemic. This
class of bugs is not unique to Linux. Every version of
Unix and Windows must deal with user pointers inside
the OS kernel, so a method for automatically checking
an OS kernel for correct user pointer handling would be
a big step in developing a provably secure and depend-
able operating system.

We introduce type-based analyses to detect and elimi-
nate user/kernel pointer bugs. In particular, we augment
the C type system with type qualifiers to track the prove-
nance of all pointers, and then we use type inference to
automatically find unsafe uses of user pointers. Type
qualifier inference provides a principled and semanti-
cally sound way of reasoning about user/kernel pointer
bugs.

We implemented our analyses by extending CQUAL [7],
a program verification tool that performs type qualifier
inference. With our tool, we discovered several pre-
viously unknown user/kernel pointer bugs in the Linux
kernel. In our experiments, we discovered 11 user/kernel
pointer bugs in Linux kernel 2.4.20 and 10 such bugs in
Linux 2.4.23. Four bugs were common to 2.4.20 and
2.4.23, for a total of 17 different bugs, and eight of these
17 were still present in the 2.5 development series. We

have confirmed all but two of the bugs with kernel de-
velopers. All the bugs were exploitable.

We needed to make several significant improvements to
CQUAL in order to reduce the number of false positives
it reports. First, we added a context-sensitive analysis
to CQUAL , which has reduced the number of false pos-
itives and the number of annotations required from the
programmer. Second, we improved CQUAL ’s handling
of C structures by allowing fields of different instances
of a structure to have different types. Finally, we im-
proved CQUAL ’s analysis of casts between pointers and
integers. Without these improvements, CQUAL reported
far too many false positives. These two improvements
reduce the number of warnings 20-fold and make the
task of using CQUAL on the Linux kernel manageable.

Our principled approach to finding user/kernel pointer
bugs contrasts with the ad-hoc methods used in
MECA[15], a prior tool that has also been used to find
user/kernel pointer bugs. MECA aims for a very low
false positive rate, possibly at the cost of missing bugs;
in contrast, CQUAL aims to catch all bugs, at the cost of
more false positives. CQUAL ’s semantic analysis pro-
vides a solid foundation that may, with further research,
enable the possibility of formal verification of the ab-
sence of user/kernel pointer bugs in real OS’s.

All program analysis tools have false positives, but we
show that programmers can substantially reduce the
number of false positives in their programs by making
a few small stylistic changes to their coding style. By
following a few simple rules, programmers can write
code that is efficient and easy to read, but can be au-
tomatically checked for security violations. These rules
reduce the likelihood of getting spurious warnings from
program verification or bug-finding tools like CQUAL .
These rules are not specific to CQUAL and almost al-
ways have the benefit of making programs simpler and
easier for the programmer to understand.

In summary, our main contributions are

• We introduce a semantically sound method for an-
alyzing user/kernel security bugs.

• We identify 17 new user/kernel bugs in several dif-
ferent versions of the Linux kernel.

• We show how to reduce false positives by an order
of magnitude, and thereby make type-based analy-
sis of user/kernel bugs practical, by enhancing ex-
isting type inference algorithms in several ways.
These improvements are applicable to any data-
flow oriented program analysis tool.

Kernel

User

User

Unmapped

3GB

0

4GB

Figure 1: The Linux virtual memory layout on 32-bit
architectures.

• We develop guidelines that programmers can fol-
low to further reduce the number of false positives
when using program verification tools.

We begin by describing user/kernel pointer bugs in Sec-
tion 2. We then describe type qualifier inference, and
our refinements to this technique, in Section 3. Our ex-
perimental setup and results are presented in Sections 4
and 5, respectively. Section 6 discusses our false posi-
tive analysis and programming guidelines. We consider
other approaches in Section 7. Finally, we summarize
our results and give several directions for future work in
Section 8.

2 User/kernel Pointer Bugs

All Unix and Windows operating systems are suscepti-
ble to user pointer bugs, but we’ll explain them in the
context of Linux. On 32-bit computers, Linux divides
the virtual address space seen by user processes into two
sections, as illustrated in Figure 1. The virtual memory
space from 0 to 3GB is available to the user process. The
kernel executable code and data structures are mapped
into the upper 1GB of the process’ address space. In
order to protect the integrity and secrecy of the kernel
code and data, the user process is not permitted to read
or write the top 1GB of its virtual memory. When a user
process makes a system call, the kernel doesn’t need to
change VM mappings, it just needs to enable read and
write access to the top 1GB of virtual memory. It dis-
ables access to the top 1GB before returning control to
the user process.

This provides a conceptually clean way to prevent user
processes from accessing kernel memory directly, but

it imposes certain obligations on kernel programmers.
We will illustrate this with a toy example: suppose we
want to implement two new system calls,setint and
getint: 1

int x;

void sys_setint(int *p)

{

memcpy(&x, p, sizeof(x)); // BAD!

}

void sys_getint(int *p)

{

memcpy(p, &x, sizeof(x)); // BAD!

}

Imagine a user program that makes the system call

getint(buf);

In a well-behaved program, the pointer,buf, points to
a valid region of memory in the user process’ address
space and the kernel fills the memory pointed to bybuf

with the value ofx.

However, this toy example is insecure. The problem is
that a malicious process may try to pass an invalidbuf

to the kernel. There are two waysbuf can be invalid.

First, buf may point to unmapped memory in the user
process’ address space. In this case, the virtual address,
buf, has no corresponding physical address. If the ker-
nel attempts to copyx to the location pointed to bybuf,
then the processor will generate a page fault. In some
circumstances, the kernel might recover. However, if the
kernel has disabled interrupts, then the page fault han-
dler will not run and, at this point, the whole computer
locks up. Hence the toy kernel code shown above is sus-
ceptible to denial-of-service attacks.

Alternatively, an attacker may attempt to pass abuf that
points into the kernel’s region of memory. The user pro-
cess cannot read or write to this region of memory, but
the kernel can. If the kernel blindly copies data tobuf,
then several different attacks are possible:

• By settingbuf to point to the kernel executable
code, the attacker can make the kernel overwrite
its own code with the contents ofx. Since the user
can also set the value ofx via legitimate calls to
setint, she can use this to overwrite the kernel

1In Linux, the system callfoo is implemented in the kernel by a
functionsys foo.

code with any new code of her choice. For exam-
ple, she could eliminate permission checking code
in order to elevate her privileges.

• The attacker can setbuf to point to kernel data
structures that store her user id. By overwriting
these with all0s, the attacker can gain root privi-
leges.

• By passing in random values forbuf the attacker
can cause the kernel to crash.

The above examples show the importance of validating
a buffer pointer passed from user space before copying
data into that buffer. If the kernel forgets to perform this
check, then a malicious user gains control of the sys-
tem. In most cases, an attacker can exploit reads from
unchecked pointers, too. Imagine an attacker making
the system call

setint(buf);

The kernel will copy 4 bytes frombuf into x. An at-
tacker could pointbuf at kernel file buffers, and the ker-
nel would copy the contents of those file buffers intox.
At this point, the attacker can read the contents of the
file buffer out ofx via a legitimate call togetint. With
a little luck, the user can use this attack to learn the con-
tents of/etc/shadow, or even the secret TLS key of the
local web server.

User/kernel pointer bugs are hard to detect during testing
because, in most cases, they succeed silently. As long
as user programs pass valid pointers to system calls, a
buggy system call implementation will work correctly.
Only a malicious program will uncover the bug.

The setint andgetint functions shown above may
seem contrived, but two of the bugs we found effectively
implemented these two system calls (albeit not under
these names).

In order to avoid these errors, the Linux kernel con-
tains several user pointer access functions that kernel
developers are supposed to use instead ofmemcpy or
dereferencing user pointers directly. The two most
prominent of these functions arecopy from user and
copy to user, which behave likememcpy but perform
the required safety checks on their user pointer argu-
ments. Correct implementations ofsetint andgetint
would look like

int x;

void sys_setint(int *p)

{

copy_from_user(&x, p, sizeof(x));

}

void sys_getint(int *p)

{

copy_to_user(p, &x, sizeof(x));

}

As long as the user pointer access functions like
copy from user andcopy to user are used correctly,
the kernel is safe. Unfortunately, Linux 2.4.20 has 129
system calls accepting pointers from user space as ar-
guments. Making matters worse, the design of some
system calls, likeioctl, require every device driver to
handle user pointers directly, as opposed to having the
system call interface sanitize the user pointers as soon
as they enter the kernel. Thus the Linux kernel has hun-
dreds of sources of user pointers and thousands of con-
sumers, all of which must be checked for correctness,
making manual auditing impossible.

This problem is not unique to Linux. For example,
FreeBSD has similar user buffer access functions. Even
though we have presented the problem in the context of
the Linux kernel VM setup, the same problem would
arise in other VM architectures, e.g. if the kernel was
direct mapped and processes lived in virtual memory.

The above discussion makes it clear that there are essen-
tially two disjoint kinds of pointers in the kernel:

User pointers: A pointer variable whose value is under
user control and hence untrustworthy.

Kernel pointers: A pointer variable whose value is un-
der kernel control and guaranteed by the kernel to
always point into the kernel’s memory space, and
hence is trustworthy.

User pointers should always be verified to refer to user-
level memory before being dereferenced. In contrast,
kernel pointers do not need to be verified before being
dereferenced.

It is easy for programmers to make user pointer errors
because user pointers look just like kernel pointers—
they’re both of type “void *”. If user pointers had a
completely different type from kernel pointers, say

typedef struct {

void *p;

} user_pointer_t;

then it would be much easier for programmers to dis-
tinguish user and kernel pointers. Even better, if this
type were opaque, then the compiler could check that
the programmer never accidentally dereferenced a user
pointer. We could thus think of user pointers as an ab-
stract data type (ADT) where the only permitted op-
erations arecopy {to,from} user, and then the type
system would enforce that user pointers must never be
dereferenced. This would prevent user/kernel pointer
bugs in a clean and principled way. The downside of
such an approach is that programmers can no longer do
simple, safe operations, likep++, on user pointers.

Fortunately, we can have all the advantages of typed
pointers without the inflexibility if we tweak the con-
cept slightly. All that’s really needed is aqualifier on
pointer types to indicate whether they were passed from
user space or not. Consider, for example, the following
code:

int copy_from_user(void * kernel to,

void * user from,

int len);

int memcpy(void * kernel to,

void * kernel from,

int len);

int x;

void sys_setint(int * user p)

{

copy_from_user(&x, p, sizeof(x));

}

void sys_getint(int * user p)

{

memcpy(p, &x, sizeof(x));

}

In this example,kernel and user modify the basic
void * type to make explicit whether the pointer is
from user or kernel space. Notice that in the function
sys setint, all the type qualifiers match. For instance,
the user pointer p is passed into theuser argument
from of copy from user. In contrast, the function
sys getint has a type error, since theuser pointerp
is passed tomemcpy, which expects akernel pointer
instead. In this case, this type error indicates an ex-
ploitable user/kernel bug.

In this paper, we use CQUAL , which allows program-
mers to add user-defined qualifiers to the C program-
ming language. We createuser andkernel type quali-
fiers and we use CQUAL to type-check the kernel. We
have analyzed several different versions of the Linux
kernel for user/kernel bugs, finding a total of 17 different

exploitable user/kernel pointer bugs.

3 Type Qualifier Inference

We begin with a review of type qualifier inference. The
C programming language supports a few basic types,
like int , float , andchar . Programmers can construct
types such as pointers, or references, to any type. For ex-
ample, in our notation,ref (int) denotes a reference to
a memory location of typeint , or, in other words, a
pointer of typeint *. The C language also contains a
few type qualifiers, likeconst , that can be applied to any
of the basic or constructed types.

CQUAL allows programmers to create new, user-defined
qualifiers that modify the standard C types, just like
const . In our case, we use CQUAL to define qualifiers
user andkernel. The intended meaning is as follows: a
user int is anint whose value is possibly under user
control and hence is untrustworthy; ifτ is any type, a
user τ is a value of typeτ that is possibly under user
control; and likewise, akernel τ is a value of typeτ that
is under kernel control. For instance, auser ref (int)
is a reference to anint that is stored in user space; its
value is an address in the mapped portion of user mem-
ory, and dereferencing it yields anint . In C, a pointerp
of this type would be declared by the codeint * user
p;, and theint typically would be stored in user space,
while the pointer to theint is stored in kernel space.
We refer to a C type, together with its qualifiers, as a
qualified type.

Note that qualifiers can modify each level of a standard
type. The C typeint * user is different fromint

user *; in the former case, it is the pointer (i.e., ad-
dress) whose value is under user control, while in the lat-
ter case, it is the integer whose value is under user con-
trol. As another example, the programmer could declare
a variable of C typeint * user * kernel, which corre-
sponds in our notation tokernel ref (user ref (int));
this would refer to a pointer, whose value came from the
kernel, that points to a pointer, whose value originally
came from user space, to an integer.

In general, the invariant we maintain is that every pointer
of typekernel ref (· · ·) has a value referring to an ad-
dress in kernel space and cannot be controlled by any
user process. Pointers of typeuser ref (· · ·) may con-
tain any address whatsoever. Normally, when the sys-
tem is not under attack, user pointers refer to mapped
memory within user space, but in the presence of an

adversary, this cannot be relied upon. Thus a pointer
of typekernel ref (· · ·) is safe to dereference directly;
user ref (· · ·) types are not.

The type qualifier inference approach to program anal-
ysis has several advantages. First, type qualifier infer-
ence requires programmers to add relatively few annota-
tions to their programs. Programmers demand tools with
low overhead, and type qualifier inference tools certainly
meet those demands. Second, type qualifiers enable pro-
grammers to find bugs at compile time, before an appli-
cation becomes widely distributed and impossible to fix.
Third, type qualifiers are sound; if a sound analysis re-
ports no errors in a source program, then it isguaranteed
to be free of the class of bugs being checked. Sound-
ness is critical for verifying security-relevant programs;
a single missed security bug compromises the entire pro-
gram.

Like standard C types and type qualifiers, CQUAL is
flow-insensitive. This means that each program expres-
sion must have one qualified type that will be valid
throughout the entire execution of the program. For
example, just as C doesn’t allow a local variable to
sometimes be used as anint and sometimes as a
struct, CQUAL does not permit a pointer to some-
times have typeuser ref (int) and sometimes have
typekernel ref (int).

Programmers can use these qualifiers to express spec-
ifications in their programs. As an example, Figure 2
shows type qualifier annotations forcopy from user

and copy to user. With these annotations in place,
if a programmer ever calls one of these functions with,
say, auser pointer where akernel pointer is expected,
CQUAL will report a type error. Figure 2 also shows
CQUAL ’s syntax for annotating built-in C operators.
The op deref annotation prohibits dereferencinguser
pointers. This annotation applies to all dereferences,
including the C “*” and “->” operators, array index-
ing, and implicit dereferences of references to local vari-
ables.

In certain cases, Linux allowskernel pointers to be
treated as if they wereuser pointers. This is analogous
to the standard C rule that anonconst 2 variable can be
passed to a function expecting aconst argument, and is
an example of qualifier subtyping. The notion of sub-
typing should be intuitively familiar from the world of
object-oriented programming. In Java, for instance, ifA

is a subclass ofB, then an object of classA can be used
wherever an object of classB is expected, henceA can

2In C, thenonconst qualifier is an implicit default.

int copy from user(void user * kernel kto,

void * user ufrom,

int len);

int copy to user(void * user uto,

void * kernel kfrom,

int len);

α op deref(α * kernel p);

Figure 2: Annotations for the two basic user space ac-
cess functions in the Linux kernel. The first argument to
copy from user must be a pointer to kernel space, but
after the copy, its contents will be under user control.
The op deref annotation declares that the C derefer-
ence operator, “*”, takes akernel pointer to any type,α,
and returns a value of typeα.

be thought of as a subtype ofB (writtenA < B).

CQUAL supports subtyping relations on user-defined
qualifiers, so we can declare thatkernel is a subtype
of user , written as kernel < user . CQUAL then
extends qualifier subtyping relationships to qualified-
type subtyping rules as follows. First, we declare that
kernel int < user int, because anyint under kernel
control can be treated as aint possibly under user con-
trol. The general rule is3

Q ≤ Q′

Q int ≤ Q′ int

This notation states that if qualifierQ is a subtype of
qualifier Q′, thenQ int is a subtype ofQ′ int, or in
other words, any value of typeQ int can be safely used
whereever aQ′ int is expected. For example, if a func-
tion expects aconst int, then it may be called with a
nonconst int becausenonconst < const, and therefore
nonconst int < const int.

The rule for subtyping of pointers is slightly more com-
plicated.

Q ≤ Q′ τ = τ ′

Q ref (τ) ≤ Q′ ref (τ ′)

Notice that this rule requires that the referent types,τ

andτ ′, be equal, not just thatτ ≤ τ ′. This is a well-
known typing rule that is required for soundness. This
rule captures CQUAL ’s sound handling of aliasing, a
problem that has plagued other bug-finding tools.

3This is standard deductive inference notation. The notation

A1 A2 · · · An

B

means that, ifA1, A2, . . . An are all true, thenB is true.

So far, we have described the basis for a type-checking
analysis. If we were willing to manually insert auser
or kernel qualifier at every level of every type decla-
ration in the Linux kernel, we would be able to detect
user/pointer bugs by running standard type-checking al-
gorithms. However, the annotation burden of marking
up the entire Linux kernel in this way would be im-
mense, and so we need some way to reduce the workload
on the programmer.

We reduce the annotation burden usingtype inference.
The key observation is that the vast majority of type
qualifier annotations would be redundant, and could be
inferred from a few base annotations, like those in Fig-
ure 2. Type qualifier inference provides a way to infer
these redundant annotations: it checks whether there is
any way to extend the source code annotations to make
the result type-check. CQUAL implements type quali-
fier inference. For example, this allows CQUAL to infer
from the code

int bad ioctl(void * user badp)

{
char badbuf[8];

void *badq = badp;

copy to user(badbuf, badq, 8);

}

thatbadq must be auser pointer (from the assignment
badq = badp), but it is used as akernel pointer (since
badq is passed tocopy from user). This is a type er-
ror. In this case, the type error indicates a bona fide se-
curity hole.

Notice that, in this example, the programmer didn’t have
to write an annotation for the type ofbadq—instead,
it was inferred from other annotations. Inference can
dramatically reduce the number of annotations required
from the programmer. In our experiments with Linux,
we needed less than 300 annotations for the whole ker-
nel; everything else was inferred by CQUAL ’s type in-
ference algorithm.

3.1 Soundness

As mentioned before, the theoretical underpinnings of
type inference are sound, but C contains several con-
structs that can be used in unsound ways. Here we ex-
plain how CQUAL deals with these constructs.

No memory safety. CQUAL assumes programs are
memory safe, i.e. that they contain no buffer overflows.
Type qualifiers cannot detect buffer overflows, but other
tools, such as BOON[14] or CCured[10], do address
memory safety. In conjunction with these tools, CQUAL

forms a powerful system for verifying security proper-
ties.

Unions. CQUAL assumes programmers use unions
safely, i.e. that the programmer does not write to one
field of a union and read from a different one. Like
memory-safety, type qualifiers cannot detect invalid uses
of unions, but union-safety could plausibly be checked
by another program analysis tool. Programmers could
use CQUAL together with such a tool if it seems unre-
alistic to assume that programmers always use unions
safely.

Separate Compilation. Type qualifier inference
works from a few base annotations, but if the anno-
tations are incomplete or incorrect, then the results
may not be sound. In legacy systems like the Linux
kernel, each source module provides one interface and
makes use of many others, but none of these interfaces
are annotated. Thus any analysis of one source file
in isolation will be unsound. To get sound results, a
whole-program analysis is required.

Type casts. C allows programmers to cast values to
arbitrary types. We had to extend CQUAL slightly to
handle some obscure cases. With these enhancements,
our experience is that CQUAL just “does the right thing”
in all cases we’ve encountered. For example, if the pro-
grammer casts from one type of struct to another, then
CQUAL matches up the corresponding fields and flows
qualifiers appropriately.

Inline assembly. CQUAL ignores inline assembly,
which may cause it to miss some type errors. Analyz-
ing inline assembly would require detailed knowledge of
the instruction set and instruction semantics of a specific
processor. Inline assembly is rare in most programs, and
programmers can obtain sound analysis results by an-
notating functions containing inline assembly. Alterna-
tively, programmers could provide C implementations of
inline assembly blocks. The C implementations would
not only benefit CQUAL , they would serve to document
the corresponding assembly code.

3.2 Our Analysis Refinements

We made several enhancements to CQUAL to support
our user/kernel analysis. The challenge was to improve
the analysis’ precision and reduce the number of false
positives without sacrificing scalability or soundness.
One of the contributions of this work is that we have
developed a number of refinements to CQUAL that meet
this challenge. These refinements may be generally use-
ful in other applications as well, so our techniques may
be of independent interest. However, because the tech-
nical details require some programming language back-
ground to explain precisely, we leave the details to Ap-
pendix A and we only summarize our improvements
here.

Context-Sensitivity. Context-sensitivity enables
CQUAL to match up function calls and returns. With-
out context-sensitivity, type constraints at one call
site to a functionf will “flow” to other call sites.
Context-sensitivity simultaneously reduces the number
of annotations programmers must write and the number
of false positives CQUAL generates. Experiments
performed with Percent-S, a CQUAL -based tool for de-
tecting format string bugs, found that context-sensitivity
could reduce the false positive rate by over 90%,
depending on the application[11].

Field-sensitivity. Field-sensitivity enables CQUAL to
distinguish different instances of structures. Without
field-sensitivity, every variable of typestruct foo

shares one qualified type, so a type constraint on field
x of one instance flows to fieldx of every other instance.
Without this enhancement, CQUAL was effectively un-
able to provide any useful results on the Linux kernel be-
cause the kernel uses structures so heavily. In our early
experiments, the field-insensitive analysis produced a
false positive for almost every call tocopy from user,
copy to user, etc. With our more precise analysis of
structures and fields, CQUAL produces only a few hun-
dred warnings.

Well-formedness Constraints. Well-formedness con-
straints enable CQUAL to enforce special type rules re-
lated to structures and pointers. We used this feature to
encode rules like, “If a structure was copied from user
space (and hence is under user control), then so were
all its fields.” Without support for well-formedness con-
straints, CQUAL would miss some user/kernel bugs (see,

e.g., Figure 4). Well-formedness constraints require no
additional annotations; they are optional properties that
are enabled or disabled in the configuration file that de-
scribes the type system used for an analysis.

Sound and Precise Pointer/Integer Casts. CQUAL

now analyzes casts between pointers and integers
soundly. Our improvement to CQUAL ’s cast handling
simultaneously fixes a soundness bug and improves
CQUAL ’s precision.

Together, these refinements dramatically reduce
CQUAL ’s false positive rate. Before we made these
improvements, CQUAL reported type errors (almost all
of which were false positives) in almost every kernel
source file. Now CQUAL finds type errors in only about
5% of the kernel source files, a 20-fold reduction in the
number of false positives.

3.3 Error Reporting

In addition to developing new refinements to type qual-
ifier inference, we also created a heuristic that dramat-
ically increases the “signal-to-noise” ratio of type in-
ference error reports. We implemented this heuristic in
CQUAL , but it may be applicable to other program anal-
ysis tools as well.

Before explaining our heuristic, we first need to explain
how CQUAL detects type errors. When CQUAL ana-
lyzes a source program, it creates a qualifier constraint
graph representing all the type constraints it discovers.
A typing error occurs whenever there is a valid path4

from qualifierQ to qualifierQ′ where the user-specified
type system requires thatQ 6≤ Q′. In the user/kernel
example, CQUAL looks for valid paths fromuser to ker-
nel. Since each edge in an error path is derived from a
specific line of code, given an error path, CQUAL can
walk the user through the sequence of source code state-
ments that gave rise to the error, as is shown in Figure 3.
This allows at least rudimentary error reporting, and it is
what was implemented in CQUAL prior to our work.

Unfortunately, though, such a simple approach is totally
inadequate for a system as large as the Linux kernel. Be-
cause typing errors tend to “leak out” over the rest of the
program, one programming mistake can lead to thou-
sands of error paths. Presenting all these paths to the

4Although it’s not important for this discussion, the definition of a
valid path is given in Appendix A.

user, as CQUAL used to do, is overwhelming: it is un-
likely that any user will have the patience to sort through
thousands of redundant warning messages. Our heuris-
tic enables CQUAL to select a few canonical paths that
capture the fundamental programming errors so the user
can correct them.

Many program analyses reduce finding errors in the in-
put program to finding invalid paths through a graph, so
a scheme for selecting error paths for display to the user
could benefit a variety of program analyses.

To understand the idea behind our heuristic, imagine an
ideal error reporting algorithm. This algorithm would
pick out a small set,S, of statements in the original
source code that break the type-correctness of the pro-
gram. These statements may or may not be bugs, so
we refer to them simply as untypable statements. The
algorithm should select these statements such that, if
the programmer fixed these lines of code, then the pro-
gram would type-check. The ideal algorithm would then
look at each error path and decide which statement in
S is the “cause” of this error path. After bucketing
the error paths by their causal statement, the ideal al-
gorithm would select one representive error path from
each bucket and display it to the user.

Implementing the ideal algorithm is impossible, so we
approximate it as best we can. The goal of our approxi-
mation is to print out a small number of error traces from
each of the ideal buckets. When the approximation suc-
ceeds, each of the untypable statements from the ideal
algorithm will be represented, enabling the programmer
to address all his mistakes.

Another way to understand our heuristic is that it tries to
eliminate “derivative” and “redundant” errors, i.e., errors
caused by one type mismatch leaking out into the rest of
the program, as well as multiple error paths that only
differ in some minor, inconsequential way.

The heuristic works as follows. First, CQUAL sorts all
the error paths in order of increasing length. It is ob-
viously easier for the programmer to understand shorter
paths than longer ones, so those will be printed first. It is
not enough to just print the shortest path, though, since
the program may have two or more unrelated errors.

Instead, letE be the set of all qualifier variables that trig-
ger type errors. To eliminate derivative errors we require
that, for each qualifierQ ∈ E, CQUAL prints outat most
onepath passing throughQ. To see why this rule works,
imagine a local variable that is used as both auser and
kernel pointer. This variable causes a type error, and the

buf.win_info.handle: $kernel $user

proto-noderef.cq:66 $kernel == _op_deref_arg1@66@1208

cs.c:1208 == &win->magic

cs.c:1199 == *win

ds.c:809 == *pcmcia_get_first_window_arg1@809

ds.c:809 == buf.win_info.handle

include/pcmcia/ds.h:76 == buf.win_info

ds.c:716 == buf

ds.c:748 == *cast

ds.c:748 == *__generic_copy_from_user_arg1@748

ds.c:748 == *__generic_copy_from_user_arg1

proto-noderef.cq:27 == $user

Figure 3: The CQUAL error report for a bug in the PCMCIA system of Linux 2.4.5 through 2.6.0. We shortened file
names for formatting. By convention, CQUAL type qualifiers all begin with “$”.

error may spread to other variables through assignments,
return statements, etc. When using our heuristic, these
other, derivative errors will not be printed because they
necessarily will have longer error paths. After printing
the path of the original error, the qualifier variable with
the type error will be marked, suppressing any extrane-
ous error reports. Thus this heuristic has the additional
benefit of selecting the error path that is most likely to
highlight the actual programming bug that caused the er-
ror. The heuristic will also clearly eliminate redundant
errors since if two paths differ only in minor, inconse-
quential ways, they will still share some qualifier vari-
able with a type error. In essence, our heuristic approxi-
mates the buckets of the ideal algorithm by using quali-
fier variables as buckets instead.

Before we implemented this heuristic, CQUAL often re-
ported over 1000 type errors per file, in the kernel source
files we analyzed. Now, CQUAL usually emits one or
two error paths, and occasionally as many as 20. Fur-
thermore, in our experience with CQUAL , this error re-
porting strategy accomplishes the main goals of the ide-
alized algorithm described above: it reports just enough
type errors to cover all the untypable statements in the
original program.

4 Experiment Setup

We performed experiments with three separate goals.
First, we wanted to verify that CQUAL is effective at
finding user/kernel pointer bugs. Second, we wanted to
demonstrate that our advanced type qualifier inference
algorithms scale to huge programs like the Linux kernel.
Third, we wanted to construct a Linux kernel provably

free of user/kernel pointer bugs.

To begin, we annotated all the user pointer accessor
functions and the dereference operator, as shown in Fig-
ure 2. These annotations are given in Figure??. We
also annotated the kernel memory management routines,
kmalloc andkfree, to indicate they return and accept
kernel pointers. These annotations were not strictly nec-
essary, but they are a good sanity check on our results.
Since CQUAL ignores inline assembly code, we anno-
tated several common functions implemented in pure as-
sembly, such asmemset andstrlen. Finally, we an-
notated all the Linux system calls as acceptinguser ar-
guments. There are 221 system calls in Linux 2.4.20,
so these formed the bulk of our annotations. All told,
we created 287 annotations. Adding all the annotations
took about half a day. Table 4 lists all the functions we
annotated.

The Linux kernel can be configured with a variety of
features and drivers. We used two different configura-
tions in our experiments. In the file-by-file experiments
we configured the kernel to enable as many drivers and
features as possible. We call this the “full” configura-
tion. For the whole-kernel analyses, we used the default
configuration as shipped with kernels on kernel.org.

CQUAL can be used to perform two types of analyses:
file-by-file or whole-program. A file-by-file analysis
looks at each source file in isolation. As mentioned ear-
lier, this type of analysis is not sound, but it is very con-
venient. A whole-program analysis is sound, but takes
more time and memory. Some of our experiments are
file-by-file and some are whole-program, depending on
the goal of the experiment.

To validate CQUAL as a bug-finding tool we performed

file-by-file analyses of Linux kernels 2.4.20 and 2.4.23
and recorded the number of bugs CQUAL found. We
also analyzed the warning reports to determine what
programmers can do to avoid false positives. Finally,
we made a subjective evaluation of our error reporting
heuristics to determine how effective they are at elimi-
nating redundant warnings.

We chose to analyze each kernel source file in isolation
because programmers depend on separate compilation,
so this model best approximates how programmers actu-
ally use static analysis tools in practice. As described in
Section 3, analyzing one file at a time is not sound. To
partially compensate for this, we disabled the subtyp-
ing relationkernel < user . In the context of single-file
analysis, disabling subtyping enables CQUAL to detect
inconsistent use of pointers, which is likely to represent
a programming error. The following example illustrates
a common coding mistake in the Linux kernel:

void dev_ioctl(int cmd, char *p)

{

char buf[10];

if (cmd == 0)

copy_from_user(buf, p, 10);

else

*p = 0;

}

The parameter,p, is not explicitly annotated as auser
pointer, but it almost certainly is intended to be used as
a user pointer, so dereferencing it in the “else” clause is
probably a serious, exploitable bug. If we allow subtyp-
ing, i.e. if we assumekernel pointers can be used where
user pointers are expected, then CQUAL will just con-
clude thatp must be akernel pointer. Since CQUAL

doesn’t see the entire kernel at once, it can’t see that
dev ioctl is called with user pointers, so it can’t detect
the error. With subtyping disabled, CQUAL will enforce
consistent usage ofp: either always as auser pointer or
always as akernel pointer. Thedev ioctl function will
therefor fail to typecheck.

In addition, we separately performed a whole kernel
analysis on Linux kernel 2.4.23. We enabled subtyp-
ing for this experiment since, for whole kernel analyses,
subtyping precisely captures the semantics of user and
kernel pointers.

We had two goals with these whole-kernel experiments.
First, we wanted to verify that CQUAL ’s new type qual-
ifier inference algorithms scale to large programs, so we
measured the time and memory used while performing

the analysis. We then used the output of CQUAL to mea-
sure how difficult it would be to develop a version of the
Linux kernel provably free of user/kernel pointer bugs.
As we shall see, this study uncovered new research di-
rections in automated security analysis.

5 Experimental Results

All our experimental results are summarized in Table 2.

Error reporting. We quickly noticed that although
our error clustering algorithm substantially improved
CQUAL ’s output, it still reported many redundant warn-
ing messages. Each warning is accompanied by an er-
ror path that explains the source of the user pointer and
the line of code that dereferences it, as shown in Fig-
ure 3. Based on our experience reviewing the warnings,
they can further be clustered by the line of code from
which the user pointer originates. In our experiments,
we performed this additional clustering (according to the
source of the user pointer) manually. Table 2 presents
both the raw and manually clustered warning counts. We
refer only to the clustered error counts throughout the
rest of this paper.

Bug finding with CQ UAL . Our first experiment an-
alyzed each source file separately in the full configu-
ration of Linux kernel 2.4.20. CQUAL generated 275
unique warnings in 117 of the 2312 source files in this
version of the kernel. Seven warnings corresponded to
real bugs. Figure 4 shows one of the subtler bugs we
found in 2.4.20. Kernel maintainers had fixed all but
one of these bugs in Linux 2.4.22, and we confirmed the
remaining bug with kernel developers. Because of this,
we repeated the experiment when Linux kernel 2.4.23
became available.

When we performed the same experiment on Linux
2.4.23, CQUAL generated 264 unique warnings in 155
files. Six warnings were real bugs, and 258 were false
positives. We have confirmed 4 of the bugs with kernel
developers. Figure 5 shows a simple user/kernel bug that
an adversary could easily exploit to gain root privileges
or crash the system.

We also did a detailed analysis of the false positives gen-
erated in this experiment and attempted to change the
kernel source code to eliminate the causes of the spuri-
ous warnings; see Section 6.

Version Configuration Mode Raw Warnings Unique Warnings Exploitable Bugs

2.4.20 Full File 512 275 7
2.4.23 Full File 571 264 6
2.4.23 Default File 171 76 1
2.4.23 Default Whole 227 53 4

Table 2: Experimental results. A full configuration enablesas many drivers and features as possible. The default
configuration is as shipped with kernels on kernel.org. A file-by-file analysis is unsound, but represents how pro-
grammers will actually use program auditing tools. A whole kernel analysis requires more resources, but is sound
and can be used for software verification. The raw warning count is the total number of warnings emitted by CQUAL .
We discovered in our experiments that many of these warningswere redundant, so the unique warning count more
accurately represents the effort of investigating CQUAL ’s output.

Scalability of Type Qualifier Inference. To verify
the scalability of CQUAL ’s type inference algorithms,
we performed a whole-kernel analysis on Linux kernel
2.4.23 with the default configuration. Since the default
configuration includes support for only a subset of the
drivers, this comprises about 700 source files contain-
ing 300KLOC. We ran the analysis on an 800MHz Ita-
nium computer, and it required 10GB of RAM and 90
minutes to complete. Since CQUAL ’s data-structures
consist almost entirely of pointers, it uses nearly twice
as much memory on 64-bit computers as on 32-bit ma-
chines; also, 800MHz Itaniums are not very fast. There-
fore we expect that CQUAL can analyze large programs
on typical developer workstations in use today.

Software Verification. Finally, we took a first step to-
wards developing an OS kernel that is provably free of
user/kernel pointer bugs. We performed a brief review of
the warnings generated during our whole-kernel analy-
sis of Linux 2.4.23. This review uncovered an additional
four bugs and a total of 49 unique false positives. We can
draw two conclusions from this experiment. First, our
error reporting algorithms may occasionally cause one
bug to be masked by another bug or false positive. This
is obvious from the fact that the bug discovered in our
file-by-file analysis is not reported in the whole-program
analysis. On the other hand, a whole-kernel analysis
with CQUAL does not result in many more warnings
than a file-by-file analysis. This suggests that we only
need to reduce CQUAL ’s false positive rate by an order
of magnitude to be able to develop a kernel provably free
of user/kernel pointer bugs.

Observations. We can draw several conclusions from
these experiments. First, type qualifier inference is an
effective way of finding bugs in large software systems.
All total, we found 17 different user/kernel bugs, several

of which were present in many different versions of the
Linux kernel and had presumably gone undiscovered for
years.

Second, soundness matters. For example, Yang, et al.
used their unsound bug-finding tool, MECA, to search
for user/kernel bugs in Linux 2.5.63. We can’t make a
direct comparison between CQUAL and MECA since we
didn’t analyze 2.5.63. However, of the 10 bugs we found
in Linux 2.4.23, 8 were still present in 2.5.63, so we can
compare MECA and CQUAL on these 8 bugs. MECA
missed 6 of these bugs, so while MECA is a valuable
bug-finding tool, it cannot be trusted by security soft-
ware developers to find all bugs.

Our attempt to create a verified version of Linux 2.4.23
suggests future research directions. The main obstacles
to developing a verifiable kernel are false positives due
to field unification and field updates, which are described
in Appendix B. A sound method for analyzing these
programming idioms would open the door to verifiably
secure operating systems.

Bugs and warnings are not distributed evenly through-
out the kernel. Of the eleven bugs we found in Linux
2.4.23, all but two are in device drivers. Since there are
about 1500KLOC in drivers and 700KLOC in the rest
of the kernel, this represents a defect rate of about one
bug per 200KLOC for driver code and about one bug
per 400KLOC for the rest of the kernel. (Caveat: These
numbers must be taken with a grain of salt, because the
sample size is very small.) This suggests that the core
kernel code is more carefully vetted than device driver
code. On the other hand, the bugs we found are not
just in “obscure” device drivers: we found four bugs in
the core of the widely used PCMCIA driver subsystem.
Warnings are also more common in drivers. In our file-
by-file experiment with 2.4.23, 196 of the 264 unique
warnings were in driver files.

1: int i2cdev_ioctl (struct inode *inode, struct file *file, unsigned int cmd,

2: unsigned long arg)

3: {

4: ...

5: case I2C_RDWR:

6: if (copy_from_user(&rdwr_arg,

7: (struct i2c_rdwr_ioctl_data *)arg,

8: sizeof(rdwr_arg)))

9: return -EFAULT;

10: ...

11: for(i=0; i<rdwr_arg.nmsgs; i++)

12: {

13: ...

14: if(copy_from_user(rdwr_pa[i].buf,

15: rdwr_arg.msgs[i].buf,

16: rdwr_pa[i].len))

17: {

18: res = -EFAULT;

19: break;

20: }

21: }

22: ...

Figure 4: An example bug we found in Linux 2.4.20. Thearg parameter is auser pointer. The bug is subtle because
the expressionrdwr arg.msgs[i].buf on line 15 dereferences theuser pointerrdwr arg.msgs, but it looks safe
since it is an argument tocopy from user. Kernel developers had recently audited this code for user/kernel bugs
when we found this error.

Finally, we discovered a significant amount of bug
turnover. Between Linux kernels 2.4.20 and 2.4.23, 7
user/kernel security bugs were fixed and 5 more intro-
duced. This suggests that even stable, mature, slowly
changing software systems may have large numbers of
undiscovered security holes waiting to be exploited.

6 False Positives

We analyzed the false positives from our experiment
with Linux kernel 2.4.23. This investigation serves two
purposes.

First, since it is impossible to build a program verifi-
cation tool that is simultaneously sound and complete,5

any system for developing provably secure software
must depend on both program analysis tools and pro-
grammer discipline. We propose two simple rules, based
on our false positive analysis, that will help software de-
velopers write verifiably secure code.

5This is a corollary of Rice’s Theorem.

Second, our false positive analysis can guide future
reasearch in program verification tools. Our detailed
classification shows tool developers the programming
idioms that they will encounter in real code, and which
ones are crucial for a precise and useful analysis.

Our methodology was as follows. To determine the
cause of each warning, we attempted to modify the ker-
nel source code to eliminate the warning while pre-
serving the functionality of the code. We kept care-
ful notes on the nature of our changes, and their effect
on CQUAL ’s output. Table 3 shows the different false
positive sources we identified, the frequency with which
they occurred, and whether each type of false positives
tended to indicate code that could be simplified or made
more robust. The total number of false positives here is
less than 264 because fixing one false positive can elimi-
nate several others simultaneously. Appendix B explains
each type of false positive, and how to avoid it, in detail.

Based on our experiences analyzing these false positives,
we have developed two simple rules that can help future
programmers write verifiably secure code. These rules
are not specific to CQUAL . Following these rules should
reduce the false positive rate of any data-flow oriented

1: static int

2: w9968cf_do_ioctl(struct w9968cf_device* cam, unsigned cmd, void* arg)

3: {

4: ...

5: case VIDIOCGFBUF:

6: {

7: struct video_buffer* buffer = (struct video_buffer*)arg;

8:

9: memset(buffer, 0, sizeof(struct video_buffer));

Figure 5: A bug from Linux 2.4.23. Sincearg is auser pointer, an attacker could easily exploit this bug to gain root
privileges or crash the system.

Source Frequency Useful Fix

User flag 50 Maybe Pass two pointers instead offrom user flag
Address of array 24 Yes Don’t take address of arrays
Non-subtyping 20 No Enable subtyping
C type misuse 19 Yes Declare explicit, detailed types
Field unification 18 No None
Field update 15 No None
Open structure 5 Yes Use C99 open structure support
Temporary variable 4 Yes Don’t re-use temporary variables
User-kernel assignment 3 Yes Setuser pointers to NULL instead
Device buffer access 2 Maybe None
FS Tricks 2 Maybe None

Table 3: The types of false positives CQUAL generated and the number of times each false positive occurred. We
consider a false positive useful if it tends to indicate source code that could be simplified, clarified, or otherwise
improved. Where possible, we list a simple rule for preventing each kind of false positive.

program analysis tool.

Rule 1 Give separate names to separate logical entities.

Rule 2 Declare objects with C types that closely reflect
their conceptual types.

As an example of Rule 1, if a temporary variable some-
times holds auser pointer and sometimes holdskernel
pointer, then replace it with two temporary variables,
one for each logical use of the original variable. This
will make the code clearer to other programmers and,
with a recent compiler, will not use any additional mem-
ory. 6 Reusing temporary variables may have improved
performance in the past, but now it just makes code more
confusing and harder to verify automatically.

As an example of the second rule, if a variable is concep-
tually a pointer, then declare it as a pointer, not along

6The variables can share the same stack slot.

or unsigned int. We actually saw code that declared
a local variable as anunsigned long, but cast it to a
pointerevery time the variable was used.This is an ex-
treme example, but subtler applications of these rules are
presented in Appendix B.

Following these rules is easy and has almost no impact
on performance, but can dramatically reduce the num-
ber of false positives that program analysis tools like
CQUAL generate. From Table 3, kernel programmers
could eliminate all but 37 of the false positives we saw
(a factor of4 reduction) by making a few simple changes
to their code.

7 Related Work

CQUAL has been used to check security properties in
programs before. Shankar, et al., used CQUAL to find
format string bugs in security critical programs[11], and

Zhang, et al., used CQUAL to verify the placement of
authorization hooks in the Linux kernel[16]. Broadwell,
et al. used CQUAL in their Scrash system for eliminating
sensitive private data from crash reports[2]. Elsman, et
al. used CQUAL to check many other non-security appli-
cations, such as Y2K bugs[4] and Foster, et al. checked
correct use of garbage collected “init” data in the
Linux kernel[6].

Linus Torvalds’ program checker, Sparse, also uses
type qualifiers to find user/kernel pointer bugs[12].
Sparse doesn’t support polymorphism or type inference,
though, so programmers have to write hundreds or even
thousands of annotations. Since Sparse requires pro-
grammers to write so many annotations before yielding
any payoff, it has seen little use in the Linux kernel.
As of kernel 2.6.0-test6, only 181 files contain Sparse
user/kernel pointer annotations. Sparse also requires ex-
tensive use of type qualifier casts that render its results
completely unsound. Before Sparse, programmers had
to be careful to ensure their code was correct. After
Sparse, programmers have to be careful that their casts
are also correct. This is an improvement, but as we saw
in Section 5, bugs can easily slip through.

Yang, et al. developed MECA[15], a program check-
ing tool carefully designed to have a low false positive
rate. They showed how to use MECA to find dozens of
user-kernel pointer bugs in the Linux kernel. The essen-
tial difference between MECA and CQUAL is their per-
spective on false positives: MECA aims for a very low
false positive, even at the cost of missing bugs, while
CQUAL aims to detect all bugs, even at the cost of in-
creasing the false positive rate. Thus, the designers of
MECA ignored any C features they felt cause too many
false positives, and consequently MECA is unsound:
it makes no attempt to deal with pointer aliasing, and
completely ignores multiply-indirected pointers. MECA
uses many advanced program analysis features, such as
flow-sensitivity and a limited form of predicated types.
MECA can also be used for other kinds of security anal-
yses and is not restricted to user/kernel bugs. This re-
sults in a great bug-finding tool, but MECA can not be
relied upon to find all bugs. In comparison, CQUAL

uses principled, semantic-based analysis techniques that
are sound and that may prove a first step towards formal
verification of the entire kernel, though CQUAL ’s false
alarm rate is noticeably higher.

CQUAL only considers the data-flow in the program
being analyzed, completely ignoring the control-flow
aspects of the program. There are many other tools
that are good at analyzing control-flow, but because
the user/kernel property is primarily about data-flow,

control-flow oriented tools are not a good match for
finding user/kernel bugs. For instance, model checkers
like MOPS[3], SLAM[1], and BLAST[8] look primar-
ily at the control-flow structure of the program being
analyzed and thus are excellent tools for verifying that
security critical operations are performed in the right or-
der, but they are incapable of reasoning about data val-
ues in the program. Conversely, it would be impossible
to check ordering properties with CQUAL . Thus tools
like CQUAL and MOPS complement each other.

There are several other ad-hoc bug-finding tools that use
simple lexical and/or local analysis techniques. Exam-
ples include RATS[9], ITS4[13], and LCLint[5]. These
tools are unsound, since they don’t deal with pointer
aliasing or any other deep structure of the program.
Also, they tend to produce many false positives, since
they don’t support polymorphism, flow-sensitivity, or
other advanced program analysis features.

8 Conclusion

We have shown that type qualifier inference is an effec-
tive technique for finding user/kernel bugs, but it has the
potential to do much more. Because type qualifier in-
ference is sound, it may lead to techniques for formally
verifying the security properties of security critical soft-
ware. We have also described several refinements to the
basic type inference methodology. These refinements
dramatically reduce the number of false positives gen-
erated by our type inference engine, CQUAL , enabling
it to analyze complex software systems like the Linux
kernel. We have also described a heuristic that improves
error reports from CQUAL . All of our enhancements
can be applied to other data-flow oriented program anal-
ysis tools. We have shown that formal software analysis
methods can scale to large software systems. Finally, we
have analyzed the false positives generated by CQUAL

and developed simple rules programmers can follow to
write verifiable code. These rules also apply to other
program analysis tools.

Our research suggests many directions for future re-
search. First, our false positive analysis highlights
several shortcomings in current program analysis tech-
niques. Advances in structure-handling would have a
dramatic effect on the usability of current program anal-
ysis tools, and could enable the development of veri-
fied security software. Several of the classes of false
positives derive from the flow-insensitive analysis we
use. Adding flow-sensitivity may further reduce the

false-positive rate, although no theory of simultaneously
flow-, field- and context-sensitive type qualifiers cur-
rently exists. Alternatively, researchers could investigate
alternative programming idioms that enable program-
mers to write clear code that is easy to verify correct.
Currently, annotating the source code requires domain-
specific knowledge, so some annotations may acciden-
tally be omitted. Methods for checking or automatically
deriving annotations could improve analysis results.

Our results on Linux 2.4.20 and 2.4.23 suggest that
widely deployed, mature systems may have even more
latent security holes than previously believed. With
sound tools like CQUAL , researchers have a tool to mea-
sure the number of bugs in software. Statistics on bug
counts in different software projects could identify de-
velopment habits that produce exceptionally buggy or
exceptionally secure software, and could help users eval-
uate the risks of deploying software.

Availability

CQUAL is open source software hosted on SourceForge,
and is available from
http://www.cs.umd.edu/~jfoster/cqual/.

Acknowledgements

We thank Jeff Foster for creating CQUAL and help-
ing us use and improve it. We thank John Kodumal
for implementing an early version of polymorphism in
CQUAL and for helping us with the theory behind many
of the improvements we made to CQUAL . We thank the
anonyous reviewers for many helpful suggestions.

References

[1] Thomas Ball and Sriram K. Rajamani. The SLAM
Project: Debugging System Software via Static
Analysis. In Proceedings of the 29th Annual
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 1–3, Portland,
Oregon, January 2002.

[2] Pete Broadwell, Matt Harren, and Naveen Sastry.
Scrash: A System for Generating Secure Crash In-

formation. InProceedings of the 12th Usenix Se-
curity Symposium, Washington, DC, August 2003.

[3] Hao Chen and David Wagner. MOPS: an infras-
tructure for examining security properties of soft-
ware. In Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security,
pages 235–244, Washington, DC, November 18–
22, 2002.

[4] Martin Elsman, Jeffrey S. Foster, and Alexander
Aiken. Carillon—A System to Find Y2K Prob-
lems in C Programs, 1999.http://bane.cs.
berkeley.edu/carillon.

[5] David Evans. LCLint User’s Guide, February
1996.

[6] Jeff Foster, Rob Johnson, John Kodumal, and Alex
Aiken. Flow-Insensitive Type Qualifiers.ACM
Transactions on Programming Languages and Sys-
tems. Submitted for publication.

[7] Jeffrey Scott Foster.Type Qualifiers: Lightweight
Specifications to Improve Software Quality. PhD
thesis, University of California, Berkeley, Decem-
ber 2002.

[8] Thomas A. Henzinger, Ranjit Jhala, Rupak Ma-
jumdar, and Gregoire Sutre. Lazy abstraction. In
Symposium on Principles of Programming Lan-
guages, pages 58–70, 2002.

[9] Secure Software Inc. RATS download page.
http://www.securesw.com/auditing_

tools_download.htm.

[10] George Necula, Scott McPeak, and Westley
Weimer. CCured: Type-Safe Retrofitting of
Legacy Code. InProceedings of the 29th Annual
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 128–139, Port-
land, Oregon, January 2002.

[11] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster,
and David Wagner. Detecting Format String Vul-
nerabilities with Type Qualifiers. InProceedings of
the 10th Usenix Security Symposium, Washington,
D.C., August 2001.

[12] Linus Torvalds. Managing kernel development,
November 2003.http://www.linuxjournal.
com/article.php?sid=7272.

[13] John Viega, J.T. Bloch, Tadayoshi Kohno, and
Gary McGraw. ITS4: A Static Vulnerability Scan-
ner for C and C++ Code. In16th Annual Com-
puter Security Applications Conference, December
2000.http://www.acsac.org.

[14] David Wagner, Jeffrey S. Foster, Eric A. Brewer,
and Alexander Aiken. A First Step Towards Au-
tomated Detection of Buffer Overrun Vulnerabil-
ities. In Networking and Distributed System Se-
curity Symposium 2000, San Diego, California,
February 2000.

[15] Junfeng Yang, Ted Kremenek, Yichen Xie, and
Dawson Engler. MECA: an extensible, expressive
system and language for statically checking secu-
rity properties. InProceedings of the 10th ACM
conference on Computer and communication secu-
rity, pages 321–334. ACM Press, 2003.

[16] Xiaolan Zhang, Antony Edwards, and Trent Jaeger.
Using CQUAL for Static Analysis of Authoriza-
tion Hook Placement. InProceedings of the 11th
Usenix Security Symposium, San Francisco, CA,
August 2002.

A CQUAL Improvements

A.1 Context-Sensitivity

Previously, CQUAL ’s handling of function calls could
introduce a large number of false positives, and users had
to add numerous annotations to the source program to
squelch these warnings. We have improved CQUAL by
adding support for context-sensitivity, completely elim-
inating this source of false-positives and hence the need
for extra annotations.

To understand the importance of context-sensitivity,
consider the code in Figure 6. When the old, monomor-
phic version of CQUAL analyzes this code, it generates
the type qualifier constraint graph shown in Figure 7 (ig-
nore the labels on the edges for the moment). In the
constraint graph, each node represents one type qualifier
variable, and an edgeQ1 → Q2 means thatQ1 ≤ Q2.
The nodeskto andufrom are from the first and second
arguments tocopy from user in Figure 2. Any path
through the graph corresponds to a transitive sequence of
typing constraints. For example, the graph clearly shows
the sequence of constraints

user ≤ goodp ≤ h ≤ helper ret ≤ b ≤ to ≤ kernel

which imply a typing error, butgood ioctl doesn’t
contain any user/kernel pointer bugs. The confusion
arises because thehelper function processes bothuser
andkernel pointers, but a monomorphic type inference

1: void * helper(void *h)

2: {
3: assert (h != NULL);

4: return h;

5: }
6:

7: int good ioctl(void * user goodp)

8: {
9: char goodbuf[8];

10: void *q = helper(goodp);

11: void *b = helper(goodbuf);

12:

13: copy from user(b, q, 8);

14: }

Figure 6:good ioctl doesn’t have a user/kernel pointer
bug, but a monomorphic analysis would report that it
does.

engine cannot distinguish different calls to the same
function. Thus, passing auser pointer intohelper on
line 10 induces a constraint on the return type of the un-
related call tohelper on line 11.

To fix this, we add labels to the edges in the type qualifier
constraint graph as shown in Figure 7. These labels re-
strict the set of valid paths though the graph by matching
up function calls and returns, because we don’t consider
paths through the graph with mismatched parentheses.
Formally, we require paths to satisfy the following rule:

Rule 3 A path in the constraint graph is valid if the
string of parentheses along the path is a substring of
some string of matched parentheses.

In other words, the path may not havemismatched
parentheses, but it may haveunmatched parentheses. We
say that a qualifier node,Q, in the graph has a type error
if there exist qualifiersQ1 andQ2 such that the user-
defined type qualifier system specifies thatQ1 6≤ Q2

and there exists a valid path fromQ1 to Q and a valid
path fromQ to Q2.

So we have reduced the type inference problem to the
problem of checking if there exists a path, subject to
Rule 3, from qualifierQ1 to Q2 where the user-defined
type qualifier system specifies thatQ1 6≤ Q2. This is an
instance of the more general CFL reachability problem.
In this case, the reachability query can be answered in
time linear in the size of the graph. A discussion of CFL
reachability algorithms is outside the scope of this paper.

Figure 7: The constraint graph generated from the code
in Figure 6. CQUAL prevents bad flow through the
helper function by ignoring paths with mismatched
parentheses. Note that not all the qualifier variables and
constraints are shown.

A.2 Structures

Prior versions of CQUAL were also field-insensitive,
which created false positives when analyzing programs
that use structures intensively. OS kernels are heavy
users of structures, so it is critical that CQUAL be able
to distinguish fields of different structures if it is to give
good results on problems like user/kernel pointer bugs.

Early experiments showed that full field-sensitivity re-
quires too much memory to be practical. Thus we chose
a hybrid approach that preserves soundness, guarantees
linear memory usage, and significantly decreases the
false positive rate. CQUAL treats structures and unions
identically, so all these improvements apply to unions, as
well, but for simplicity we only discuss structures below.
A small example illustrates the problem.

void sys foo (char * user p)

{

struct foo x;

struct foo y;

x.a = p;

*(y.a) = 0;

}

In a field-insensitive type qualifier inference analysis,
one qualified type is assigned to all the “a” fields of all
instances ofstruct foo. Thus the type qualifier con-
straint graph contains the path

user → p → a → kernel.

The type qualifier nodea applies to bothx.a andy.a,
creating the false positive. To eliminate this false pos-
itive, we need to disambiguate the fields of different
structure instances.

A naive solution to this problem is to simply create sep-
arate qualifier variables for the fields of each structure
instance. This certainly solves the problem, but it can
require memory exponential in the size of the input pro-
gram, as the following example illustrates

struct a { int x; int y; };

struct b { struct a x; struct a y; };

struct c { struct b x; struct b y; };

struct c s;

We now have to create qualifiers for

s.x.x.x s.x.x.y s.x.y.x s.x.y.y

s.y.x.x s.y.x.y s.y.y.x s.y.y.y

This wouldn’t be a problem if real programs didn’t de-
clare deeply nested structures like the above, but they do.
OS kernels contain hundreds of large, complex, inter-
connected data structures that get passed to hundreds, if
not thousands, of functions. They don’t exhibit the expo-
nential worst case described above, but they are complex
enough to make the naive approach completely imprac-
tical.

We enhanced CQUAL ’s structure handling in two ways.
First, the fields of different instances of a structure are
given separate qualified types. This eliminates many of
the false positives, as above. To control memory usage,
we create the qualifiers for each field on demand the first
time that field is referenced. Since the number of fields
referenced by a program must be linear in the size of the
program, this ensures that the number of qualifiers cre-
ated by CQUAL is linear in the size of the input program.

Seocnd, upon analyzing an assignment statement likex

= y, wherex andy are structures, we unify the types of

x andy, including all their fields. From then on, refer-
encing a field ofx is equivalent to referencing the cor-
responding field ofy. This approach is sound, and it
guarantees at worst linear space-complexity.

Because of this trade-off, our approach currently pro-
vides no subtyping or polymorphism on structure fields.
In our experience, the lack of subtyping on structure
fields is of little consequence because most structures
are accessed through pointers. Thus, as we saw in Sec-
tion 3, the type system would require equating the types
of structure fields anyway. The lack of polymorphism
for structure fields is also relatively benign, but as de-
scribed in Section 6, when it does cause a false positive,
it can be quite difficult to work around.

A.3 Well-formedness Constraints

Old versions of CQUAL only supported one set of
semantics for their type qualifier systems, but the
user/kernel application requires some non-standard typ-
ing rules. These non-standard rules center around the
typing relations between structures and their fields and
pointers and their referents. A type,τ , that satisfies
these requirements is calledwell-formed, written⊢wf τ .
We added support to CQUAL for optionally enforcing
well-formedness constraints. Although this feature af-
fects CQUAL ’s structure typing rules, it is independent
of the enhanced structure handling described in the pre-
vious section.

The following code illustrates the need for well-formed
types:

void ioctl(void * user arg)

{
struct cmd { char* datap; } c;

copy from user(&c, arg, sizeof(c));

c.datap[0] = 0;

}

The annotation forcopy from user in Figure 2 im-
plies thatc receives a type of the formuser struct

cmd, which makes intuitive sense since the structure’s
contents are copied from user space. In the standard
type qualifier semantics, though, the type qualifier on
the structure is completely unrelated to the type qualifier
on a field field, such asc.datap. Thus the dangerous
user pointer dereference,c.datap[0], doesn’t create a
typing error. This means that our basic type system fails
to capture a certain class of user/pointer bugs, an obvi-
ous shortcoming. To repair this shortcoming, the typing

rules need to take into account the relationship between
a structure and its contents.

To fix this, we allow qualifiers both on the structure
itself as well as on all the fields, and then we intro-
ducedwell-formedness constraintsthat relate these qual-
ifiers. For instance, in the above example, the variablec

might receive the typeuser struct { char * kernel
datap; }, and this violates the intuitive constraint that
if the contents of the structure are under user control,
then the value of all of its fields are also under user con-
trol.

More formally, this relationship may be expressed by the
well-formedness constraint

∀i Q ≤ Qi ⊢wf τi

⊢wf Q struct (Q1 τ1, . . . , Qn τn)
.

This rule states that, ifQ ≤ Qi and if the typesτi

are all well-formed, then the structure with field types
(Q1 τ1, . . . , Qn τn) and qualifierQ is well-formed. In
the implementation, this rule results in the addition of
edges from the type qualifier on every structure instance
to the qualifiers on each of its fields.

A similar issue arises with pointers. When a pointer is
passed from user space, the value it points to is also un-
der user control. The well-formedness constraint

Q ≤ Q′ ⊢wf τ

⊢wf Q ref (Q′ τ)
.

captures this rule. Again, the implementation of this rule
simply requires adding type qualifier constraint edges
from the qualifier on every pointer to the qualifier of its
referent.

In our implementation, the application of these rules
can be controlled very precisely by the user of CQUAL .
For example, in our experiments with the Linux ker-
nel, the two rules given here were enabled only for the
the user/kernel analysis. No other qualifiers, including
const , were affected by these rules. This flexibility is
implemented by storing a bit-mask with each constraint
edge indicating the qualifiers to which it applies.

A.4 Integer/Pointer Casts

The C code

char **p = ...;

int x = (int)p;

induces the qualified type constraint

p ref (p′ ref (p′′ char)) ≤ x int

From this, we know thatp ≤ x, but what aboutp′ and
p′′? Previous versions of CQUAL “collapsed” the type
of p by adding the constraintsp′′ = p′ = p. This caused
many false positives, and it isn’t even sound.

Both these problems can be solved by treating everyint

as an implicitvoid *. Then the type constraint becomes

p ref (p′ ref (p′′ char)) ≤ x ref (x′ void)

This reduces to the qualifier constraintsp ≤ x andp′′ =
p′ = x′. This approach still requires collapsing part of
the type ofp, but it is obviously more precise and, as a
bonus, sound.

B False Positive Details

User Flag. Several subsystems in the Linux ker-
nel pass around pointers along with a flag indicating
whether the pointer is a user pointer or a kernel pointer.
These functions typically look something like

void tty_write(void *p,

int from_user)

{

char buf[8];

if (from_user)

copy_from_user(buf, p, 8);

else

memcpy(buf, p, 8);

}

Sincep is used inconsistently, CQUAL cannot assign a
type top, and hence generates a typing error. The type
of p depends on the value offrom user. This idiom,
where the value of one variable indicates the type of an-
other, appears in all kinds of code, not just OS kernels,
and programmers can easily avoid it. One way to make
this code type-safe is to recognize thatp serves two dif-
ferent logical roles, so we can convert the program to
have two pointers as follows:

void tty_write(void *kp, void *up,

int from_user)

{

char buf[8];

if (from_user)

copy_from_user(buf, up, 8);

else

memcpy(buf, kp, 8);

}

Now from user does not indicate the type of another
argument to the function. Instead it indicates which ar-
gument to use. Note that thefrom user flag could be
eliminated by testing forup != NULL instead.

Programmers can also fix this problem by viewing it as a
lack of context-sensitivity: the type ofp depends on the
calling context. CQUAL supports context-sensitivity, so
we just need to find a way to exploit it. The solution is to
encode the accesses top in the arguments totty write:

typedef int (*copyfunc)(void *to,

void *from,

int len);

void tty_write(void *p, copyfunc cp)

{

char buf[8];

cp(buf, p, 8);

}

Programmers can now call either

tty write(user pointer, copy from user);

tty write(kernel pointer, memcpy);.

A type inference engine like CQUAL can verify that the
arguments are never confused or misused.

Address of Array. In C, the following two code frag-
ments accomplish the same thing:

char A[10];

memcpy(A, ...);

char A[10];

memcpy(&A, ...);

These two code fragments give the same result because
&A is the same asA, i.e. these expressions have the same
value. The two expressions have different types, though,
and CQUAL is careful to distinguish the types, which
can generate false positives when&A is used. The ex-
pression&A has typeQ∗

1
ref (Q1 array (Q′

1
char)).

When this gets coerced toQ2 ref (Q′

2
char) in the call

to memcpy, there’s an extra level in the type. CQUAL

applies the standard type collapsing rule, identifyingQ1

andQ′

1
. This can easily lead to false positives.

We could easy modify CQUAL to avoid this source of
false positives, but after some thought, we decided that
using&A makes code unnecessarily brittle, so program-
mers just shouldn’t use it. This code works because, for
arrays,&A=A. If the developer ever changes the decla-
ration ofA to “char *A” (so she can dynamically allo-
cateA, for example), then&A andA will differ, and thus
memcpy(&A,...) will break. Similarly, if the program-
mer decides to passA as a parameter tofunc, thenA will
behave as a pointer, also breaking uses of&A.

Because taking the address of an array is so brittle and
completely unnecessary, we recommend just not doing
it.

C type misuse. Examples of this source of false pos-
itives take one of two forms: variables declared with
a type that doesn’t reflect how they are actually used
and variables declared with very little type structure at
all. Thelong vs. pointer example given above demon-
strates the first form of type misuse, but sometimes pro-
grammers provide almost no type information at all. For
example, several kernel device drivers would assemble
command messages on the stack. These messages had
a well-defined format, but there was no corresponding
message data structure in the source code. Instead, the
messages were assembled in simplechar arrays:

void makemsg(char *buf)

{

char msg[10];

msg[0] = READ_REGISTER;

msg[1] = 5;

msg[2] = buf;

...

The following code is not only easier to typecheck, it’s
much easier to understand:7

void makemsg(char *buf)

{

struct msg m;

m.command = READ_REGISTER;

m.register = 5;

7The developer must declarestruct msg as “packed” to ensure
equivalent behavior. Both gcc and Microsoft Visual C++ support
packed structures.

m.resultbuf = buf;

...

Declaring program variables with complete and cor-
rect types helps both programmers and program analysis
tools.

Field Update. Since CQUAL is flow-insensitive,
structure fields cannot be updated with values of two dif-
ferent types. The problem occurs most often with code
like this:

struct msg {

int type;

void *body;

}

void msg_from_user(struct msg *m)

{

struct msg km;

void *t;

copy_from_user(&km, m, ...);

t = km.body;

km.body = kmalloc(100);

copy_from_user(km.body, t, ...);

}

From the initialcopy from user, CQUAL infers that
km is under user control, and hencekm.body is a user
pointer. Whenkm.body is updated with a pointer re-
turned bykmalloc, it becomes akernel pointer, but a
flow-insensitive type-system can only assign one type to
km.body. Thus there is a type error.

We don’t have a good way to program around this source
of false positives. This problem can occur whenever one
structure instance has a field that serves two conceptual
roles. For existing code, fixing this false positive can be
a challenge. The approach we used is to copy all the non-
updated fields to a new structure instance, and initialize
the updated field in the new structure instance instead of
updating the field in the original instance. This doesn’t
produce easily maintained code, since every time a field
is added to the structure, the code must be updated to
match:

struct msg {

int type;

void *body;

}

void msg_from_user(struct msg *m)

{

struct msg tm, km;

void *t;

copy_from_user(&tm, m, ...);

km.type = tm.type;

// If struct msg had more fields

// copy those, too.

km.body = kmalloc(100);

copy_from_user(km.body, tm.body, ...);

}

For new programs, if there is only one field that is used
for two different logical purposes, then the code main-
tainance problem above can be avoided by packaging the
rest of the fields in one easily copied sub-structure, like
this:

struct msg {

struct {

int type;

} md;

void *body;

}

void msg_from_user(struct msg *m)

{

struct msg km;

void *t;

copy_from_user(&km.md, m, ...);

copy_from_user(&t->body, &m->body, ...);

km.body = kmalloc(100);

copy_from_user(km.body, t.body, ...);

}

Neither of these solutions is completely satisfactory. We
leave it as an open problem to develop simple coding
conventions that avoid this type of false positive.

Field Unification. As described in Section A.2,
CQUAL uses unification for fields of structures in or-
der to ensure that memory usage is linear. The down-
side of the this decision is that unification can generate
false positives. This is the only source of false positives
that we feel is both specific to CQUAL and not useful to
the programmer. We hope to find some way to improve
CQUAL ’s handling of structures in the future.

Non-subtyping. CQUAL supports subtyping, but we
decided not to use it in our experiments so that we could
detect inconsistent uses of pointers without performing
a whole-kernel analysis. Since we were checking for a

stricter policy than is actually required, this caused a few
false positives.

For program properties that genuinely don’t need sub-
typing, this source of false positives will not exist. If
an application does require subtyping, we can suggest
two alternatives. For small to medium programs, simply
turn on subtyping and perform a whole-program analy-
sis. For large programs, thoroughly annotating the in-
terfaces between different program modules will enable
a sound analysis in the presence of subtyping without
having to perform a whole-program analysis. These an-
notations will also provide additional documentation to
new programmers using those interfaces.

Open Structures. An open structure is a structure
with a variable-sized array immediately following it.
Such structures are often used for network messages
with a header and some variable number of bytes fol-
lowing it. Before the C99 standard,gcc had a custom
extension to the C language to support this feature:

struct msg {

int len;

char buf[0];

};

void func(void)

{

struct msg *m;

m = kmalloc(sizeof(*msg) + 10);

}

The C99 standard now includes this extension with a
slightly different syntax. Despite the relative maturity of
this C extension, several kernel programmers have cre-
ated their own open structures as follows:

struct msg {

int len;

char *data;

};

void func(void)

{

struct msg *m;

m = kmalloc(sizeof(*msg) + 10);

m->data = (char*)(m+1);

}

Since this method for creating an open structure doesn’t
provide a separate name for the buffer following the
header, a type inference engine must assign the same

type to the structure head as to the data that follows. By
giving it a separate name, this problem can be avoided.
Declaring open structures properly also has the advan-
tage of being simpler and easier to understand.

Temporary Variables. Programmers can fix false
positives caused by reuse of temporary variables by us-
ing two temporary variables instead.

User-kernel Assignment. Several kernel drivers used
the following idiom:

copy_from_user(kp, up, ...);

up = kp;

Sometimes,up is later used as a temporary variable, but
most of the time the assignment is just a safety net to
make future accidental references toup safe. In either
case, it’s easy to eliminate the assignment, or change it
to up = NULL, to eliminate the false positive.

Device Buffer Access. A few device drivers read and
write volatile device buffers. These buffers may have
a high level structure, but the drivers treat them as flat
buffers, reading and writing to device specific offsets.
Thus the problem is similar to the C type misuse exam-
ple above, where drivers construct control messages in
unstructured buffers. Here, we have the added complex-
ity of device-specific semantics for these buffers. Since
these drivers depend on the behaviour of the device in
question, it is impossible for any program analysis tool
to verify that these are correct without knowledge of the
devices being controlled.

FS Tricks. In a few special circumstances, the ker-
nel can manipulate the memory management hardware
to change the semantics of user and kernel pointers.
For historical reasons, this is performed with functions
get fs andset fs. These functions are used extremely
rarely, so we believe their use can simply be verified by
hand.

copy_from_user __memcpy_by4

__copy_from_user __memcpy_by2

__copy_from_user_ll __memcpy_g

__copy_to_user_ll __memcpy3d

__copy_to_user _mmx_memcpy

copy_to_user memset

__generic_copy_from_user_nocheck __memset_generic

__generic_copy_to_user_nocheck __constant_c_memset

__generic_copy_to_user __constant_c_and_count_memset

__generic_copy_from_user __memset_cc_by4

__constant_copy_to_user __memset_cc_by2

__constant_copy_from_user __memset_gc_by4

__constant_copy_to_user_nocheck __memset_gc_by2

__constant_copy_from_user_nocheck __memset_cg

strncpy_from_user __memset_gg

__strncpy_from_user strcpy

strnlen_user strncpy

clear_user strcat

__clear_user strncat

csum_and_copy_from_user strcmp

csum_and_copy_to_user strncmp

csum_partial_copy_from_user strchr

__verify_write strrchr

__range_ok strlen

verify_area strnlen

copy_pc_to_user memmove

copy_user_to_pc memchr

memcmp strstr

__builtin_memcmp memscan

memcpy kmalloc

__memcpy kfree

__constant_memcpy __get_free_pages

__constant_memcpy3d _op_deref

Table 4: The user space access functions, commonly used functions implemented in assembler, and the C dereference
operator we annotated for our experiments. We also annotated the Linux system calls to indicate that their arguments
are under user control.

