
Points-to Analysis in Almost
Linear Time

Bjarne Steensgard

Constraint-based Analysis

• Idea: generate
constraints and solve
them later

x = &a;

y = &b;

p = &x;

p = &y;

 x a
p
 y b

Inclusion-based Analysis

x = y

pointsTo(x) ≥ pointsTo(y)

What is the major drawback of this approach?

O(n3)

How can we do this faster?

• Use equality-based analysis. Why?

Equality-based Analysis

x = y

pointsTo(x) = pointsTo(y)

Why is this faster?

What are the tradeoffs?

What should x point to?

x = a

x = b

 a
x
 b

 a
x
 b

Imprecise, but fast – really?

• How to do equality-based, flow-insensitive
analysis in one pass?

• Use type inference with points-to sets as types

– For every variable X, let X’s type αx = pointsTo(X)

– The set {αx} – the goal of the analysis – is found
using unification-based type inference

• How is this analysis equality-based?

Type system for points-to inference

3 kinds of types:

• Value types – (pointer, function) tuples

– α ::= τ × λ

• pointer/address types:

– τ ::= ref(α) | ⊥ (null, or actual value / not pointer)

• function signatures:

– λ ::= (α1,…αn)  (αn+1,…αn+m) | ⊥

Type inequality / compatibility: ≤

• For atomic types α1 and α2:

– α1 ≤ α2 iff α1 = α2 or α1 is ⊥

• For composite types, component types must
be compatible recursively

Type rules induce points-to constraints

Example: assignment “x = y”, under type
environment A:

 A ⊢ x : ref(α1)

 A ⊢ y : ref(α2)

 α2 ≤ α1

 ⇒ A ⊢ well-typed(x = y)

Why does this only make sense for equality-based
analysis?

Other type rules

• Simple language with fairly obvious typing
rules

– Assignment of one variable to another (plus
dereference on either side, address-of on right)

– Using built-in operators

– malloc()

– Function definition and call

Algorithm: Infer Types

• Consider the following program:

x = &a;

y = &b;

p = &x;

p = &y;

Algorithm: Initialize Types

x = &a;

y = &b;

p = &x;

p = &y;

x : t1

y : t2

a : t3

b : t4

p : t5

Algorithm: Initial Constraints

x = &a;

y = &b;

p = &x;

p = &y;

x : t1

y : t2

a : t3

b : t4

p : t5

t1 = ref(t3 × ⊥)

t2 = ref(t4 × ⊥)

t5 = ref(t1 × ⊥)

t5 = ref(t2 × ⊥)

Algorithm: Joining

x : t1

y : t1

a : t3

b : t4

p : t5

t1 = ref(t3 × ⊥)

t1 = ref(t4 × ⊥)

t5 = ref(t1 × ⊥)

x = &a;

y = &b;

p = &x;

p = &y;

Algorithm: Joining

x : t1

y : t1

a : t3

b : t3

p : t5

t1 = ref(t3 × ⊥)

t5 = ref(t1 × ⊥)

x = &a;

y = &b;

p = &x;

p = &y;

Algorithm: End

t5 -> t1 -> t3

 x a
p
 y b

x : t1
y : t1
a : t3
b : t3
p : t5

t1 = ref(t3 × ⊥)
t5 = ref(t1 × ⊥)

Algorithm

• What about values that are never a pointer?

• Conditional join

– If left-hand side has type _ , add right-hand side
variable to left-hand set

– If left-hand side has type other than _ , do real
join

Data Structures

• Fast union-find

Time Complexity

• What is the time complexity of this algorithm?

• Cost of traversing program statements + cost
of creating type variable data structures + cost
of joins

• First two are proportional to size of input
program, N

• Joins: O(Nα(N,N)), where α is an inverse
Ackermann’s function (grows slowly)

Results

• Can analyze 100,000 line programs (up from
about 10,000 lines)

• Did not find anything interesting in the code

• How effective is this method?

