Points-to Analysis in Almost Linear Time

Bjarne Steensgad
Constraint-based Analysis

• Idea: generate constraints and solve them later

\[
\begin{align*}
x &= \&a; \\
y &= \&b; \\
p &= \&x; \\
p &= \&y;
\end{align*}
\]
Inclusion-based Analysis

\[x = y \]

pointsTo(x) ≥ pointsTo(y)

What is the major drawback of this approach?

\[O(n^3) \]
How can we do this faster?

• Use equality-based analysis. Why?
Equality-based Analysis

\[x = y \]

\[\text{pointsTo}(x) = \text{pointsTo}(y) \]

Why is this faster?

What are the tradeoffs?
What should x point to?

x = a
x = b
Imprecise, but fast – really?

• How to do equality-based, flow-insensitive analysis in one pass?
• Use type inference with points-to sets as types
 – For every variable X, let X’s type $\alpha_x =$ pointsTo(X)
 – The set $\{\alpha_x\}$ – the goal of the analysis – is found using unification-based type inference
• How is this analysis equality-based?
Type system for points-to inference

3 kinds of types:

• Value types – (pointer, function) tuples
 - $\alpha ::= \tau \times \lambda$

• pointer/address types:
 - $\tau ::= \text{ref}(\alpha) | \bot$ (null, or actual value / not pointer)

• function signatures:
 - $\lambda ::= (\alpha_1, \ldots \alpha_n) \rightarrow (\alpha_{n+1}, \ldots \alpha_{n+m}) | \bot$
Type inequality / compatibility: \leq

- For atomic types α_1 and α_2:
 \[\alpha_1 \leq \alpha_2 \text{ iff } \alpha_1 = \alpha_2 \text{ or } \alpha_1 \text{ is } \bot \]
- For composite types, component types must be compatible recursively
Type rules induce points-to constraints

Example: assignment “x = y”, under type environment A:

\[A \vdash x : \text{ref}(\alpha_1) \]
\[A \vdash y : \text{ref}(\alpha_2) \]

\[\alpha_2 \leq \alpha_1 \]

\[\Rightarrow A \vdash \text{well-typed}(x = y) \]

Why does this only make sense for equality-based analysis?
Other type rules

• Simple language with fairly obvious typing rules
 – Assignment of one variable to another (plus dereference on either side, address-of on right)
 – Using built-in operators
 – malloc()
 – Function definition and call
Algorithm: Infer Types

• Consider the following program:

  ```
  x = &a;
  y = &b;
  p = &x;
  p = &y;
  ```
Algorithm: Initialize Types

x = &a; \quad x : t1
y = &b; \quad y : t2
p = &x; \quad a : t3
p = &y; \quad b : t4
p : t5
Algorithm: Initial Constraints

\[
\begin{align*}
x &= & \texttt{&a;} & \quad x : t1 \\
y &= & \texttt{&b;} & \quad y : t2 \\
p &= & \texttt{&x;} & \quad a : t3 \\
p &= & \texttt{&y;} & \quad b : t4 \\
p &= & \texttt{&y;} & \quad p : t5 \\
\end{align*}
\]

\[
\begin{align*}
t1 &= \texttt{\text{ref}(t3} \times \bot) \\
t2 &= \texttt{\text{ref}(t4} \times \bot) \\
t5 &= \texttt{\text{ref}(t1} \times \bot) \\
t5 &= \texttt{\text{ref}(t2} \times \bot)
\end{align*}
\]
Algorithm: Joining

\[x : t_1 \]
\[y : t_1 \]
\[a : t_3 \]
\[b : t_4 \]
\[p : t_5 \]

\[t_1 = \text{ref}(t_3 \times \bot) \]
\[t_1 = \text{ref}(t_4 \times \bot) \]
\[t_5 = \text{ref}(t_1 \times \bot) \]

\[x = \&a; \]
\[y = \&b; \]
\[p = \&x; \]
\[p = \&y; \]
Algorithm: Joining

\[
\begin{align*}
 x &= \&a; \\
 y &= \&b; \\
 p &= \&x; \\
 p &= \&y; \\
\end{align*}
\]

\[
\begin{align*}
 x &: t1 \\
 y &: t1 \\
 a &: t3 \\
 b &: t3 \\
 p &: t5 \\
 t1 &= \text{ref}(t3 \times \bot) \\
 t5 &= \text{ref}(t1 \times \bot)
\end{align*}
\]
Algorithm: End

\[t1 = \text{ref}(t3 \times \bot) \]
\[t5 = \text{ref}(t1 \times \bot) \]

\[x : t1 \]
\[y : t1 \]
\[a : t3 \]
\[b : t3 \]
\[p : t5 \]
Algorithm

• What about values that are never a pointer?

• Conditional join
 – If left-hand side has type _, add right-hand side variable to left-hand set
 – If left-hand side has type other than _, do real join
Data Structures

• Fast union-find
Time Complexity

• What is the time complexity of this algorithm?
• Cost of traversing program statements + cost of creating type variable data structures + cost of joins
• First two are proportional to size of input program, N
• Joins: $O(N \alpha(N,N))$, where α is an inverse Ackermann’s function (grows slowly)
Results

• Can analyze 100,000 line programs (up from about 10,000 lines)

• Did not find anything interesting in the code

• How effective is this method?