
Points-to Analysis by Type Inference

of Programs with Structures and Unions

Bjarne Steensgaard

Language

 S ::= x =S y

 | x =S &y

 | x =S *y

 | x =S allocate(y)

 | x =S op(y 1…yn)

 | x = S &y->n

 | x =S fun(f 1…fn)->(r 1…rm) S*

 | x 1…xm =S1…Sm p(y 1…yn)

Types

τ ::= ⊥ | simplesimplesimplesimple(α,λ,s,p) | structstructstructstruct(m,s,p) |

 objectobjectobjectobject(α,λ,s,p) | blankblankblankblank(s,p)

Tracking

● Size s = SIZE |

● Offset α = τ × ο
● Struct elements m = [ID ↦ τ] map

● Inconsistent usage

Types

objectobjectobjectobject

simplesimplesimplesimple structstructstructstruct

blankblankblankblank

(τ1 × ο1) (τ2 × ο2) s

a ≤S b

Partial ordering tracks information flow between assigned-from location

and assigned-to location. Sizes and offsets must be accommodated.

Expressiveness

●Aggregates

●Unions

●Data size

int * a;
struct { int b, int c } * d;

a = &d->c;

Algorithm starts off with Input:
 a = s &d->c;

The Initial type of each program variable is “blank”

to indicate that there is no access pattern.

 τa : blank(s , {})

 τd : blank(s , {})

int * a;
struct { int b, int c } * d;

a = &d->c;

We Match The Typing Rule

 x = s &y->n

This promotes both types to “simple” to indicate

they have the semantics of being accessed as a

whole.

 τa : simple(τ1 x o1, ⊥, s, {}) τ1 : blank(s, {})

 τd : simple(τ2 x o2, ⊥, s, {}) τ2 : blank(s, {})

int * a;
struct { int b, int c } * d;

a = &d->c;

Since we are accessing the memory location

described by τ2 like a struct, we promote the type,

and add a mapping to represent the member we

are accessing.

 τa : simple(τ1 x o1, ⊥, s, {}) τ1 : blank(s, {})

 τd : simple(τ2 x o2, ⊥, s, {})

 τ2 : struct([c ↦ τ3], ssizeof(d), {}) τ3 : blank(s, {τ2})

int * a;
struct { int b, int c } * d;

a = &d->c;

Finally, the algorithm unifies the accessed field

type and the type pointed to by the variable being

assigned

 unify(τ1 : blank(s, {}), τ3 : blank(s, {τ2})) = τ1,3

int * a;
struct { int b, int c } * d;

a = &d->c;

Thus we get the following set of types:

 τa : simple(τ1,3 x o1, ⊥, s , {})

 τd : simple(τ2 x o2, ⊥, s, {})

 τ2 : struct([c ↦ τ1,3], ssizeof(d) , {})

 τ1,3 : blank(s, {τ2})

int * a;
struct { int b, int c } * d;

a = &d->c;

Graphically, the types relate as follows:

 τa : simple(τ1,3 x o1, ⊥, s, {})

 τd : simple(τ2 x o2, ⊥, s, {})

 τ2 : struct([c ↦ τ1,3], ssizeof(d), {})

 τ1,3 : blank(s, {τ2})

Complexity (Theoretical)

●Any precise analysis is exponential (or worse!)

●why?

●Does this matter for this analysis? Any analysis?

Complexity (Practical)

● S = # of variables in the program

● R = max # members in any structure

● Create O(S) type variables

● O(RSα(S,S))
● S passes with unions, each might loop over

R elements

● No structs? O(Sα(S,S))
● Look familiar?

