Points—to Analysis by Type Inference

of Programs with Structures and Unions

Bjarne Steensgaard

=X

[L.anguage

=sY

=g &Y

=5y

=g allocate(y)

=5 0Py 1.--¥)

X = g &Yy->n

1--

=sfun(f ...f)->(r

X Zs1..snPY 1---¥)

1---1) S*

Types

1::= 0| simple(a,A,s,p) | struct(m,s,p) |

object(a,A,s,p) | blank(s,p)

Tracking
Size s=SIZE | T
Offset O =1X0
Struct elements m =[ID —» T] map

Inconsistent usage

Types

/Ob jeCt\
simple struct
\ /
blank

Partial ordering tracks information flow between assigned-from location
and assigned-to location. Sizes and offsets must be accommodated.

(Ty X0y (12X 0y)

a << b

Expressiveness

Aggregates
.Unions

Data size

int * a;
struct{intb, intc}*d;

a = &d->c:

Algorithm starts off with Input:
a= &d->c;

The Initial type of each program variable is “blank”
to indicate that there is no access pattern.

T : blank(s, {})

t,: blank(s, {})

int * a;
struct{intb, intc}*d;

a = &d->c:

We Match The Typing Rule

X= 4 &y->n
This promotes both types to “simple” to indicate
they have the semantics of being accessed as a
whole.

T, : simple(t;x 0, L, s, {}) T, : blank(s, {})

T, : simple(t,x0,, L, s, {}) T, : blank(s, {})

int * a;
struct{intb, intc}*d;

a = &d->c:

Since we are accessing the memory location
described by 1, like a struct, we promote the type,
and add a mapping to represent the member we
are accessing.

T,:simple(t;xo0,, 1,5, {}) T, : blank(s, {})

T4: simple(t,x 0,, 1, s, {})

T, : struct([c = T, Sge0rap 1) T3 : blank(s, {t,})

int * a;
struct{intb, intc}*d;

a = &d->c:

Finally, the algorithm unifies the accessed field
type and the type pointed to by the variable being
assigned

unify(t, : blank(s, {}), t; : blank(s, {t,})) =1, 5

int * a;
struct{intb, intc}*d;

a = &d->c:

Thus we get the following set of types:
t,: simple(t,;x0,, L, s, {})

T,: simple(t,x 0, L, s, {})

T, : struct([c = T, 5], Sgeora) - 1)

T, 5 : blank(s, {t,})

int * a;
struct{intb, intc}*d;

a = &d->c:

T,:simple(t; 5x 04, 1,5, {})

T4: simple(t,x0,, 1, s, {})

T, : struct([c — T1'3], Ssizeof(d) {}
T, 3 : blank(s, {t,})

Graphically, the types relate as follows:

Complexity (Theoretical)

.Any precise analysis is exponential (or worse!)
-why?

.Does this matter for this analysis? Any analysis?

Complexity (Practical)

. S = # of variables In the program

. R = max # members in any structure
. Create O(S) type variables

. O(RSa(S,9))

. S passes with unions, each might loop over
R elements

. No structs? O(Sa(S,S))
. Look familiar?

