Points-to Analysis by Type Inference of Programs with Structures and Unions

Bjarne Steensgaard

Language

S ::=
$$x =_{s} y$$

| $x =_{s} \& y$
| $x =_{s} \& y$
| $x =_{s} * y$
| $x =_{s} allocate(y)$
| $x =_{s} op(y_{1}...y_{n})$
| $x =_{s} \& y - > n$
| $x =_{s} \& y - > n$
| $x =_{s} fun(f_{1}...f_{n}) - >(r_{1}...r_{m}) S*$
| $x_{1}...x_{m} =_{s1...sm} p(y_{1}...y_{n})$

Types

$\tau ::= \bot | simple(\alpha, \lambda, s, p) | struct(m, s, p) |$ **object**(α , λ , s, p) | **blank**(s, p)

Tracking

- Size $s = SIZE \mid T$
- Offset
- Struct elements
- Inconsistent usage

- $\alpha = \tau \times o$
- $m = [ID \mapsto \tau] map$

Partial ordering tracks information flow between assigned-from location and assigned-to location. Sizes and offsets must be accommodated.

$$(\tau_1 \times o_1) \bigsqcup_{S} (\tau_2 \times o_2)$$

a $\trianglelefteq_S b$

Expressiveness

- •Aggregates
- •Unions
- •Data size

int * a; struct { int b, int c } * d; a = &d->c;

Algorithm starts off with Input: a = & &d->c;

The Initial type of each program variable is "blank" to indicate that there is no access pattern.

τ_a: **blank**(s , {})

 τ_d : **blank**(s, {})

int * a; struct { int b, int c } * d; a = &d->c;

We Match The Typing Rule

x =_s &y->n

This promotes both types to "simple" to indicate they have the semantics of being accessed as a whole.

 $\tau_a: simple(\tau_1 \times o_1, \bot, s, \{\}) \qquad \qquad \tau_1: blank(s, \{\})$

 τ_{d} : simple($\tau_{2} \times o_{2}, \perp, s, \{\}$) τ_{2} : blank(s, $\{\}$)

```
int * a;
struct { int b, int c } * d;
a = &d->c;
```

Since we are accessing the memory location described by τ_2 like a struct, we promote the type, and add a mapping to represent the member we are accessing.

 $\tau_a: \textbf{simple}(\tau_1 x \text{ } o_1, \bot, \text{ } s, \{\}) \qquad \quad \tau_1: \textbf{blank}(s, \{\})$

 τ_{d} : **simple**($\tau_{2} \times o_{2}, \perp, s, \{\}$)

 $\tau_2 : \textbf{struct}([c \mapsto \tau_3], s_{sizeof(d)}, \{\}) \quad \tau_3 : \textbf{blank}(s, \{\tau_2\})$

```
int * a;
struct { int b, int c } * d;
a = &d->c;
```

Finally, the algorithm unifies the accessed field type and the type pointed to by the variable being assigned

```
unify(\tau_1: blank(s, {}), \tau_3: blank(s, {\tau_2})) = \tau_{1,3}
```

int * a; struct { int b, int c } * d; a = &d->c;

Thus we get the following set of types:

$$τ_a$$
: simple($τ_{1,3} x o_1, ⊥, s, {}$)
 $τ_d$: simple($τ_2 x o_2, ⊥, s, {}$)
 $τ_2$: struct([c ↦ $τ_{1,3}$], s_{sizeof(d)}, {})
 $τ_{1,3}$: blank(s, { $τ_2$ })

```
int * a;
struct { int b, int c } * d;
a = &d->c;
```

```
\begin{split} &\tau_{a}: simple(\tau_{1,3} \times o_{1}, \bot, s, \{\}) \\ &\tau_{d}: simple(\tau_{2} \times o_{2}, \bot, s, \{\}) \\ &\tau_{2}: struct([c \mapsto \tau_{1,3}], s_{sizeof(d)}, \{\}) \\ &\tau_{1,3}: blank(s, \{\tau_{2}\}) \end{split}
```

Graphically, the types relate as follows:

Complexity (Theoretical)

Any precise analysis is exponential (or worse!)
 why?

•Does this matter for this analysis? Any analysis?

Complexity (Practical)

- S = # of variables in the program
- R = max # members in any structure
- Create O(S) type variables
- O(RSα(S,S))
 - S passes with unions, each might loop over R elements
- No structs? $O(S\alpha(S,S))$
 - Look familiar?