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Motivation: circa 1998-2000
• How to increase confidence in correctness of safety-

critical software?
• Existing techniques are limited to some degree

– Inspection
– Syntactic check
– Simulation/testing
– Theorem proving

• Symbolic model checking successful for industrial 
hardware
– Effective also for software?
– Many people’s conjecture: No



  

Temporal-Logic Model Checking [Clarke 
& Emerson 81]

Model
Checker FALSE

(with counterexample)

TRUE

State
Machine

Behavioral
Property

• Some properties expressible in temporal logics
– Error states not reached (invariant)

• Ex: AG ¬Err ⇐ Today’s focus
– Eventually ack for each request (liveness)

• AG (Req → AF Ack)
– Always possible to restart machine (possibility)

• AG EF Restart



  

Two Approaches to Model 
Checking

• Explicit
– Conventional state-space search: depth-first, breadth-

first, etc.
– Needs substantial manual abstraction and state 

reduction
• Symbolic

– Can search huge state spaces (e.g. 1020)
– Practical for many industrial hardware circuits
– Provably bad for certain arithmetic operations.
– Not believed to work well for software



  

Software Experts Said

• “The time and space complexity of the 
symbolic approach is affected…by the 
regularity of specification.  Software 
requirements specifications lack this 
necessary regular structure…” [Heimdahl & 
Leveson 96]



  

And say…

• “[Symbolic model checking] works well for 
hardware designs with regular logical 
structures…However, it is less likely to 
achieve similar reductions in software 
specifications whose logical structures are 
less regular.”  [Cheung & Kramer 99]



  

Model Checking Co-Inventor Says

• “…[symbolic model checkers] are often 
able to exploit the regularity…in many 
hardware designs.  Because software 
typically lacks this regularity, [symbolic] 
model checking seems much less helpful 
for software verification.” [Emerson 97]



  

Contributions
• Case Studies: successfully analyzed state-machine 

specifications of
– TCAS II (aircraft collision avoidance system) [FSE 96, TSE 98]
– Electrical power distribution (EPD) system on Boeing 777 [ICSE 

99, TSE 00]
• Optimizations: obtained orders-of-magnitude speedup 

[ISSTA 98, ICSE 99, TSE 00]
– Developed intuitions about efficiency
– Enabled difficult analyses

• Extension: handle complicated arithmetic
– Combine with a constraint-satisfaction engine [CAV 97]



  

Invariant Checking as Set 
Manipulations

• Compute Yi+1 = Pre (Yi) ∪ Yi

• Check if Yn ∩ Init = ∅

Y0 = ErrY1...Yn-1Yn = Yn-1Yn = Yn-1

Init

States that
can reach an
Error State

Error
States

Backward breadth-first search



  

Explicit vs. Implicit (Symbolic Sets)

• All even numbers between 0 and 127
– Explicit representation

• 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 
36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 
68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 
100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 
124, 126.

– Implicit (symbolic) representation
• ¬x0  (x0: least significant bit)

• Need efficient Boolean-function representation



  

Symbolic Model Checking [Burch et 
al. 90, Coudert et al. 89]

• Define Boolean state variables X
– e.g., define xn-1, xn-2, …, x0 for an n-bit integer.

• A state set becomes a Boolean function S(X)
– e.g., x0  for the set of n-bit even integers.

• Set operations (∩,∪)become Boolean 
operations (∧,∨)

• Transition relation: R(X,X).
• Compute predecessors also using Boolean 

operations
– Pre (S) =  ∃X’. S(X’) ∧ R(X,X’)



  

Binary Decision Diagrams 
(BDDs) [Bryant 86]

• DAGs, evaluated like binary 
decision trees.

• Efficiency depends on BDD 
size
– Usually small; some large 

hardware circuits can be 
handled

– Some well-known limitations
• e.g., exponential size for 

a > bc
– Few theoretical results known
– Performance unpredictable
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Symbolic Model Checking 
Ineffective for Software?

Abstraction 
and explicit 

search

Symbolic 
search

Strategy
AsynchronousSynchronousConcurrency

InfiniteFiniteStates
ComplexSimpleData

SoftwareHardware

This common view may be true for software 
like multi-threaded programs, but…



  

Consider Safety-Critical 
Software

• Most costly bugs in specification
• Use analyzable formal specification

– State-machine specifications
– Intuitive to domain experts like aircraft 

engineers
– Statecharts [Harel 87], RSML [Leveson et al. 

94], SCR [Parnas et al.], etc.



  

• Symbolic model checking good for such specs?
• Develop more intuitions about efficiency?  Optimize 

analyses?
• How to handle arithmetic?

Model-Check the Spec!

AsynchronousSynchronousSynchronousConcurrency

Possibly infiniteFinite (except 
arithmetic)

FiniteStates

Often complexSimple (except 
arithmetic)

SimpleData

Multi-threaded 
Code

SpecHardware



  

Case Study 1: TCAS II
• Traffic Alert and Collision Avoidance System

– Reduce mid-air collisions
• Warns pilots of traffic
• Issues resolution advisories

– Required on most commercial aircraft
– “One of the most complex systems on commercial 

aircraft.”
• 400-page specification reverse-engineered from 

pseudo-code
• Written in RSML by Leveson et al., based on 

statecharts



  

Case Study 2: EPD System
• Electrical Power Distribution system used on Boeing 777
• Distribute power from sources to buses via circuit breakers

– Tolerate failures in power sources and circuit breakers
• Prototype specification in statecharts
• Analysis joint with Jones and Warner of Boeing

LGen  RGen  ...

LMain Rmain ...

power sources

power buses

circuit breakers

LGen  RGen  ...

LMain Rmain ...



  

Model Check the Specifications

Model
Checker FALSE

(with counterexample)

TRUE

Boolean
encoding

Behavioral
Property

Spec

(with simple
abstraction)



  

Translation to SMV

0 1

x[c]/y

0 1

y

A

B

VAR
A: {0,1};
x: boolean;
y: boolean;

ASSIGN
init (A):= 0;
next (A):= case
  A=0 & x & c : 1;
  1 : A;
  esac;
…



  

Analyses and Results
• Used and modified SMV [McMillan 93]

• Optimizations crucial for successful model 
checking

violations of fault 
tolerance

inconsistent outputs, 
safety violations, etc.

Problems we found

simulationinspection,
static analysis

Prior verification

90 bits, 1027 states230 bits, 1060 statesState space
EPD SystemTCAS II



  

Some Formulas Checked
• TCAS II

– Descent inhibition
• AG (Alt < 1000 → ¬Descend)

– Output agreement
• AG ¬(GoalRate ≥ 0 ∧ Descend)

• EPD system
– AG (NoFailures →

          (LMain ∧ RMain ∧ LBackup ∧ RBackup))
– AG (AtMostOneFailure → (LMain ∧ RMain))
– AG (AtMostTwoFailures → (LBackup ∨ RBackup))



  

A Counterexample Found
• A single failure can cause a bus  to lose power

1. Power-up sequence; normal operation
2. A circuit breaker fails
3. Other circuit breakers reconfigured to maintain 

power
4. User changes some inputs
5. The first circuit breaker recovers
6. User turns off a generator
7. A bus loses power This error 

does not exist 
in onboard 

system



  

Environmental Model

macrostep

microsteps

inputs outputs

• Synchrony hypothesis
– No new inputs within macrostep
– Macrostep encoded as a sequence of transitions
– Statecharts, Esterel [Berry & Gonthier 92], Lustre [Halbwachs et 

al. 92], etc.



  

Synchronization in Statecharts

0 1

x[c]/y

0 1

y

A

B

• Event-driven
• Label: trigger[guard]/action



  

Forward vs. Backward Search

• Generally unclear which is better
• Forward search

– Often good for low-level hardware.
– But always bad for us; large BDDs

• Focus on backward search



  

A Disadvantage of Backward 
Search

• Visiting unreachable states

Y0
Y1

Y2

Reachable States



  

Use Known Invariants for 
Pruning

• Need known invariants that are
– small as BDDs and 
– effective in reducing BDD size

Y0
Y1

Y2

Reachable States

Invariant



  

Optimization 1: Mutual 
Exclusion of Transitions

0 1

x[c]/y

0 1

y

A

B

• Many “concurrent” 
transitions are 
sequential
– Determine using static 

analysis
• Use this to prune 

backward search



  

Overall Effects on TCAS II
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Initial EPD Analyses Failed
• Even though it has fewer states than TCAS II

• Main difference in synchronization

90 bits, 1027 
states

230 bits, 1060 
states

State space
EPD SystemTCAS II



  

Oblivious Synchronization (used 
in TCAS II)

A

B

0 1

x[c]/y

x[¬ c]/y
x[¬ c]/y x[c]/y

0 1

y[A in 1]

y[A in 0]
y[A in 0] y[A in 1]

• y signals completion of machine A
– Macrostep length: 2
– x → y → stable



  

Non-Oblivious Synchronization 
(used in EPD)

0 1

x[c]/y

0 1

y

A

B

• y signals state change in machine A
• Macrostep length: 1 or 2

– x → y → stable
– x → stable



  

Oblivious Synchronization: 
General Case

• Event sequence always identical
– Thus, every macrostep has the same length

x y,z w z

x y,z w z

x y,z w z



  

Backward Search for Oblivious 
Synchronization

• Yields small BDDs

x y,z w z

x y,z w z

x y,z w z



  

Non-Oblivious Synchronization: 
General Case

• Macrosteps may have different lengths.

x y,z w z

x w z

x



  

Backward Search for Non-
Oblivious Synchronization

• Larger BDDs

x y,z w z

x w z

x



  

Optimization 2: Restoring Regularity in 
State Sets [ICSE 99]

• Automatic semantics-preserving 
transformation:

• Add stuttering states.
• Preserve most properties, e.g., invariants 

and eventualities. [Lamport 83, Browne et 
al. 89]



  

New Backward Search

 Make every macrostop equal in length.  Smaller BDDs.
Increase # states and # state variables.
Increase # iterations to reach fixed points.



  

Other Optimizations [ISSTA 98]

• Partition transition relation in various ways.
— Use multiple BDDs for transition relation.

• Abstract automatically be dependency analysis.
– Remove part of system that can’t affect result.

• Improve counter-example search.
– Avoid work in forward search.



  

Arithmetic
– TCAS II spec contains nontrivial arithmetic.

• Variables assumed discrete and bounded.
• Encoded as bits.
• Ok for linear constraints (e.g., a+b> c).
• But nonlinear constraints abstracted away.

– *BMD [Bryant & Chen] and HDD [Clarke & 
Zhao 95] do not help.

• Good for ab
• But not ab> c.



  

Why Nonlinear Constraints Hard?

Recall:  Pre(S) =  X . S(X) R(X,X).
• Assume X has n numeric variables.
• Project 2n-dimensional regions on n-

dimensional space.
• Hard if S and R nonlinear.
May not need to solve the general problem.  

Assume: 
• All numeric variables are inputs,
• and unconstrained at beginning of macrostep



  

Different Approach

• Represent each constraint as a BDD 
variable.
– Overly conservative if infeasible constraints 

not detected.
• Detect infeasible paths using constraint-

satisfaction engine (black box). 
• Prune infeasible paths from BDD 

(“filtering”).



  

Some Lessons Learned

• Focus on restricted models that people care about.
• Exploit high-level knowledge to improve analysis.

– Synchronization, environmental assumptions, etc.
– In addition to low-level BDD tricks.

• Combine static analysis and symbolic model 
checking.

• Help understand system behaviors.
– In addition to verification/falsification.



  

How General are the Techniques?

• Optimizations specific to events, macrosteps, and 
the synchrony hypothesis:

– Maybe applicable to synchronous programming languages.
• Combining forward static analysis and backward 

symbolic search:
– Seems promising.

• Constraint-satisfaction approach:
– Applicable if environment not constrained.


