Symbolic Model Checking for
Large Software Specifications

William Chan
Richard Anderson
Paul Beame
Steve Burns
Francesmary Modugno
David Jones (Boeing)
David Notkin
Jon D. Reese
William Warner (Boeing)

Motivation: circa 1998-2000

How to increase confidence in correctness of safety-
critical software?

Existing techniques are limited to some degree

— Inspection

— Syntactic check

— Simulation/testing

— Theorem proving

Symbolic model checking successful for industrial
hardware

— Effective also for software?

— Many people’s conjecture: No

Temporal-Logic Model Checking [Clarke
& Emerson 81]

State
Machine (]
Model (’ RUE——
. Checker FALSE
Behavioral \ J (with counterexample) ™~
Property

* Some properties expressible in temporal logics
— Error states not reached (invariant)
* Ex: AG 7Err O Today’s focus
— Eventually ack for each request (liveness)
* AG (Req - AF Ack)
— Always possible to restart machine (possibility)
* AG EF Restart

Two Approaches to Model
Checking

* Explicit
— Conventional state-space search: depth-first, breadth-
first, etc.

— Needs substantial manual abstraction and state
reduction

* Symbolic
— Can search huge state spaces (e.g. 1029)
— Practical for many industrial hardware circuits
— Provably bad for certain arithmetic operations.
— Not believed to work well for software

Software Experts Said

* “The time and space complexity of the
symbolic approach is affected...by the
regularity of specification. Software
requirements specifications lack this

necessary regular structure...” [Heimdahl &
Leveson 96]

And say...

* “[Symbolic model checking] works well for
hardware designs with regular logical
structures...However, it is less likely to
achieve similar reductions in software
specifications whose logical structures are
less regular.” [Cheung & Kramer 99]

Model Checking Co-Inventor Says

* “...[symbolic model checkers] are often
able to exploit the regularity...in many
hardware designs. Because software
typically lacks this regularity, [symbolic]
model checking seems much less helpful
for software verification.” [Emerson 97]

Contributions

Case Studies: successfully analyzed state-machine
specifications of

— TCAS Il (aircraft collision avoidance system) [FSE 96, TSE 98]

— Electrical power distribution (EPD) system on Boeing 777 [ICSE
99, TSE 00]

Optimizations: obtained orders-of-magnitude speedup
[ISSTA 98, ICSE 99, TSE 00]

— Developed intuitions about efficiency
— Enabled difficult analyses

Extension: handle complicated arithmetic
— Combine with a constraint-satisfaction engine [CAV 97]

Invariant Checking as Set
Manipulations

« Compute Y., =Pre (Y) LY,
 Checkif Y, n Init="1

Error
States

States that
can reach an

Error State
< Backward breadth-first search

Explicit vs. Implicit (Symbolic Sets)

* All even numbers between 0 and 127

— EXxplicit representation

*0,2,4,6, 8,10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34,
36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66,
68, 70, 72, 74,76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98,
100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122,
124, 126.

— Implicit (symbolic) representation
« X, (X,: least significant bit)

* Need efficient Boolean-function representation

Symbolic Model Checking [Burch et
al. 90, Coudert et al. 89]

Define Boolean state variables X

— e.g., define x_, X ,, ..., X, for an n-bit integer.

A state set becomes a Boolean function S(X)
— e.g., X, for the set of n-bit even integers.

Set operations (n,L1)become Boolean
operations (LJ,LJ)

Transition relation: R(X,X).

Compute predecessors also using Boolean
operations
— Pre (S) = X’. S(X) OR(X,X)

Binary Decision Diagrams
(BDDs) [Bryant 80]

* DAGs, evaluated like binary
decision trees. /%

* Efficiency depends on BDD
size
— Usually small; some large 1 1
hardware circuits can be
handled X
— Some well-known limitations 0 1
* e.g., exponential size for
a>bc C

— Few theoretical results known
— Performance unpredictable

Odd Parity

Symbolic Model Checking
Ineffective for Software?

Hardware Software
Data Simple Complex
States Finite Infinite
Concurrency | Synchronous | Asynchronous
Strategy Symbolic Abstraction
search and explicit
search

This common view may be true for software
like multi-threaded programs, but...

Consider Safety-Critical
Software

* Most costly bugs in specification

* Use analyzable formal specification
— State-machine specifications

— Intuitive to domain experts like aircraft
engineers

— Statecharts [Harel 87], RSML [Leveson et al.
94], SCR [Parnas et al.], etc.

Model-Check the Spec!

Hardware Spec Multi-threaded
Code
Data Simple Simple (except | Often complex
arithmetic)
States Finite Finite (except | Possibly infinite
arithmetic)
Concurrency Synchronous Synchronous Asynchronous

Symbolic model checking good for such specs?

Develop more intuitions about efficiency? Optimize
analyses?

How to handle arithmetic?

Case Study 1: TCAS |l

* Traffic Alert and Collision Avoidance System

— Reduce mid-air collisions
* Warns pilots of traffic
* |ssues resolution advisories

— Required on most commercial aircraft
— “One of the most complex systems on commercial
aircraft.”
* 400-page specification reverse-engineered from
pseudo-code

* Written in RSML by Leveson et al., based on
statecharts

Case Study 2: EPD System

Electrical Power Distribution system used on Boeing 777

Distribute power from sources to buses via circuit breakers
— Tolerate failures in power sources and circuit breakers

Prototype specification in statecharts
Analysis joint with Jones and Warner of Boeing

power sources LGen RGen ... L}é RGen ...

circuit breakers

power buses LMain Rmain ... LMain Rmain ...

Model Check the Specifications

(with simple

abstraction) & Boolean

/ encoding\(

Spec

Behavioral
Property

Model
Checker

/;ALSE

TRUE_/

J (with counterexample),

Translation to SMV

VAR
A: {0,1};
X: boolean;
y: boolean;

ASSIGN
init (A):= 0;
next (A) := case
A=0 &§ x & c : 1;
1 : A;
esac;

Analyses and Results

* Used and modified SMV [McMillan 93]

TCAS I EPD System
State space 230 bits, 109° states 90 bits, 10?7 states
Prior verification inspection, simulation
static analysis
Problems we found inconsistent outputs, violations of fault
safety violations, etc. tolerance

* Optimizations crucial for successful model
checking

Some Formulas Checked

 TCAS I

— Descent inhibition
* AG (Alt <1000 - —Descend)

— Output agreement
* AG -~ (GoalRate = 0 [1 Descend)
* EPD system

— AG (NoFailures -
(LMain O RMain 0O LBackup [0 RBackup))

— AG (AtMostOneFailure - (LMain LJRMain))
— AG (AtMostTwoFailures — (LBackup O RBackup))

A Counterexample Found

* A single failure can cause a bus to lose power
1. Power-up sequence; normal operation
2. A circuit breaker fails

3. Other circuit breakers reconfigured to maintain
power

4. User changes some inputs
5. The first circuit breaker recovers
6. User turns off a generator)
This error
/. A bus loses power :
does not exist
in onboard
system

Environmental Model

inputs outputs
/ mICrOStepS
>»0— > 0 - - — - — — — —
macrostep

* Synchrony hypothesis
— No new inputs within macrostep
— Macrostep encoded as a sequence of transitions

— Statecharts, Esterel [Berry & Gonthier 92], Lustre [Halbwachs et
al. 92], etc.

Synchronization in Statecharts

é)

A x[c]ly
ED Gl
- , -

o

. J

* Event-driven
* Label: trigger[guard]/action

Forward vs. Backward Search

* Generally unclear which is better

* Forward search
— Often good for low-level hardware.
— But always bad for us; large BDDs

* Focus on backward search

A Disadvantage of Backward
Search

* Visiting unreachable states

Reachable States

Use Known Invariants for
Pruning

* Need known invariants that are
— small as BDDs and
— effective in reducing BDD size

Y2
Y
L (Yo > Invariant

Reachable States

Optimization 1: Mutual
Exclusion of Transitions

* Many “concurrent’
v transitions are

sequential

_____________ — Determine using static
B y analysis

n * Use this to prune

backward search

Overall Effects on TCAS Il

10
9- >>‘1hour-L1 L
8_
7_
6_

Min. 5- [Without pruning
4 B With pruning
3_

2_
1_/
0_

P1 P2 P3 P4 P5 P6

Initial EPD Analyses Failed

* Even though it has fewer states than TCAS I

TCAS I EPD System
State space 230 bits, 1060 90 bits, 10%7
states states

* Main difference in synchronization

Oblivious Synchronization (used
in TCAS II)

x[c]ly

P x[clly

* y signals completion of machine A
— Macrostep length: 2
— X - Yy — stable

Non-Oblivious Synchronization
(used in EPD)

e

A x[c]ly
- y —_ —
EB
. J

* Yy signals state change in machine A
* Macrostep length: 1 or 2

— X - y — stable
— X - stable

Oblivious Synchronization:
General Case

* Event sequence always identical

— Thus, every macrostep has the same length

Backward Search for Oblivious

Synchronization
* Yields small BDDs

Non-Oblivious Synchronization:
General Case

* Macrosteps may have different lengths.

>O—>0—>
R 4

Y

O—>0—>0
w Z

Backward Search for Non-
Oblivious Synchronization

* Larger BDDs

Optimization 2: Restoring Regularity in
State Sets [ICSE 99]

* Automatic semantics-preserving
transformation:

* Add stuttering states.

* Preserve most properties, e.qg., invariants
and eventualities. [Lamport 83, Browne et
al. 89]

New Backward Search

v Make every macrostop equal in length. Smaller BDDs.
¥ Increase # states and # state variables.
¥ Increase # iterations to reach fixed points.

Other Optimizations [ISSTA 98]

* Partition transition relation in various ways.
— Use multiple BDDs for transition relation.

* Abstract automatically be dependency analysis.
— Remove part of system that can’t affect result.

* Improve counter-example search.
— Avoid work in forward search.

Arithmetic

— TCAS |l spec contains nontrivial arithmetic.
* Variables assumed discrete and bounded.
* Encoded as bits.
* Ok for linear constraints (e.g., a+b> c).
* But nonlinear constraints abstracted away.

—*BMD [Bryant & Chen] and HDD [Clarke &
Zhao 95] do not help.

* Good for ab
* But not ab> c.

Why Nonlinear Constraints Hard”?

Recall: Pre(S) = X. S(X) R(X,X).
* Assume X has n numeric variables.

* Project 2n-dimensional regions on n-
dimensional space.

* Hard if S and R nonlinear.

May not need to solve the general problem.
Assume:

* All numeric variables are inputs,
* and unconstrained at beginning of macrostep

Different Approach

* Represent each constraint as a BDD
variable.

— Overly conservative if infeasible constraints
not detected.

* Detect infeasible paths using constraint-
satisfaction engine (black box).

* Prune infeasible paths from BDD
(“filtering”).

Some Lessons Learned

Focus on restricted models that people care about.

Exploit high-level knowledge to improve analysis.
— Synchronization, environmental assumptions, etc.
— In addition to low-level BDD tricks.

Combine static analysis and symbolic model
checking.

Help understand system behaviors.
— In addition to verification/falsification.

How General are the Techniques?

* Optimizations specific to events, macrosteps, and
the synchrony hypothesis:
— Maybe applicable to synchronous programming languages.

* Combining forward static analysis and backward
symbolic search:
— Seems promising.

* Constraint-satisfaction approach:
— Applicable if environment not constrained.

