
Formal methods
• The failure of proof of correctness to meet its promises caused a heavy

decrease in interest in the late 1970’s and the 1980’s
• There has been a resurgence of interest in formal methods starting in

the late 1980’s and through the 1990’s
– Mostly due to potential usefulness in specification and a few

success stories
– Still not entirely compelling to me, in a broad sense, but definitely

showing more promise
• Key issues to me include

– Partial specifications (“proving little theorems about big programs
instead of big theorems about little programs” –B. Scherlis) and
incremental benefit

– Tool support (making specifications “electric” — D. Jackson) and
automated analysis

– What domains, and applied by whom?

Potential benefits

• Increased clarity
• Ability to check for internal consistency

– This is very different from program correctness,
where the issue was to show that a program
satisfied a specification

• Ability to prove properties about the specification
– Related to M. Jackson’s refutable descriptions

• Provides basis for falsification (a fancy word for
“debugging”)
– Perhaps more useful than verification

C.A.R. Hoare, 1988

Of course, there is no fool-proof methodology or magic
formula that will ensure a good, efficient, or even
feasible design. For that, the designer needs
experience, insight, flair, judgement, invention. Formal
methods can only stimulate, guide, and discipline our
human inspiration, clarify design alternatives, assist in
exploring their consequences, formalize and
communicate design decisions, and help to ensure that
they are correctly carried out.

Observation

• From a specification of a small telephone system
– “…a subscriber is a sequence of
digits. Let Subs be the set of all
subscribers …
...certain digit sequences correspond
to unobtainable numbers, and some are
neither subscribers, nor are they
unobtainable.”

• “Only a mathematician could treat the real world with
such audacious disdain.” —M. Jackson

Model-oriented

• Model a system by describing its state together with
operations over that state
– An operation is a function that maps a value of the

state together with values of parameters to the
operation onto a new state value

• A model-oriented language typically describes
mathematical objects (e.g. data structures or
functions) that are structurally similar to the required
computer software

Z (“zed”)

• Perhaps the most widely known and used model-
based specification language

• Good for describing state-based abstract descriptions
roughly in the abstract data type style
– Real ADT-oriented specifications are generally

does as algebraic specifications
• Based on typed set theory and predicate logic
• A few commercial successes

– I’ll come back to one reengineering story
afterwards

Basics

• Static schemas
– States a system can occupy
– Invariants that must be maintained in every

system state
• Dynamic schemas

– Operations that are permitted
– Relationship between inputs and outputs of those

operations
– Changes of states

The classic example

• A “birthday book” that tracks people’s birthdays and
can issue reminders of those birthdays
– There are tons of web-based versions of these

now
• There are two basic types of atomic elements in this

example
– [NAME,DATE]
– An inherent degree of abstraction: nothing about

formats, possible values, etc.

Points about Z

• This isn’t proving correctness between a specification and a
program
– There isn’t a program!

• Even the specification without the implementation has value
• The most obvious example is when a theorem is posited and

then is proven from the rest of the specification
– known’ = known ∪ {name?}

• The actual notation seems more effective that some others
• The Z is intended to be in bite-sized chucks (schema),

interspersed with natural language explanations

Schema calculus: sweet!

• The schema calculus allows us to combine
specifications using logical operators
(e.g., ∧, ∨, ⇒, ¬)
– This allows us to define the common and error

cases separately, for example, and then just ∧-ing
them together

• In some sense, it allows us to get a cleaner, smaller
specification

Z used to improve CICS/ESA_V3.1

• A broadly used IBM transaction processing system
• Integrated into IBM's existing and well-established

development process
• Many measurements of the process indicated that

they were able to reduce their costs for the
development by almost five and a half million dollars

• Early results from customers also indicated
significantly fewer problems, and those that have
been detected are less severe than would be
expected otherwise

1992 Queen’s Award
for Technological Achievement

• “Her Majesty the Queen has been graciously pleased
to approve the Prime Minister's recommendation that
The Queen's Award for Technological Achievement
should be conferred this year upon Oxford University
Computing Laboratory.

• “Oxford University Computing Laboratory gains the
Award jointly with IBM United Kingdom Laboratories
Limited for the development of a programming
method based on elementary set theory and logic
known as the Z notation, and its application in the
IBM Customer Information Control System (CICS)
product. …”

...

• “The use of Z reduced development costs
significantly and improved reliability and quality.
Precision is achieved by basing the notation on
mathematics, abstraction through data refinement,
re-use through modularity and accuracy through the
techniques of proof and derivation.

• “CICS is used worldwide by banks, insurance
companies, finance houses and airlines etc. who rely
on the integrity of the system for their day-to-day
business.”

Other success stories

• There are a few other success stories, too (not all Z!)
– Ex: Garlan and Delisle. "Formal Specification of an

Architecture for a Family of Instrumentation Systems" (1995)
– Aided Tektronix in unifying their understanding and

development processes for a broad range of oscilloscopes,
function generators, etc.

• Clarke and Wing. Formal methods: state of the art and future
directions. ACM Computing Surveys 28(4), 1996.

• Craigen, Gerhart, Ralston. An International Survey of Industrial
Applications of Formal Methods, Volumes I & II (Purpose,
Approach, Analysis and Conclusions; Case Studies), NIST,
1993.

Tool support for Z?

• Some commercial, some freeware
• Formatting (handling all those ⇒•⊕Ξ∆∉∅θ

characters)
– html extensions
– ZML

• Type checkers
• Proof editors, proof assistants, provers
• Specification animations
• …

Analyzing specifications

• It is easy to write specifications that are inconsistent
• Daniel Jackson and colleagues have developed a sequence of tools

that check Z-like specifications for inconsistencies
• You feed a specification to the tool and it says either

– Here’s a problem, and here’s a specific (counter)example of it, or
– I can’t find one (although there may be one)

• Examples include paragraph style mechanisms, telephone switch
structures, many more (generally relatively small)
– Pieces of the ideas appear in Jackson and Chapin. Redesigning

Air-Traffic Control: A Case Study in Software Design. IEEE
Software, May/June 2000

• His Alloy system is the most recent of these tools

An example (skipping lots of steps):
Jackson & Vaziri

class List {List next; Val val;}
…
void static delete (List l, Val v) {
 List prev = null;
 while (l != NULL)
 if (l.val == v) {
 prev.next = l.next ;
 return; }
 else {
 prev = l ;
 l = l.next ;
}

• Procedure for deleting all
elements with a given value
from a singly linked list

• Relational formulae are
automatically extracted

• Fields of List treated as binary
relations
• next: List → List
• val: List → Val

Desired properties of delete

1. No cells are added
– l.*next’ in l.*next

2. No cell with value v afterwards
– no c:l.*next’|c.val’=v

3. All cells with value v removed
– l.*next’ = l.*next-{c|c.val=v}

4. No cells mutated
– all c|c.val = c.val’

5. No cycles introduced
– no c:l.*next|c in c.+next ->

 no c:l.*next’|c in c.+next’

The tool shows that
• Properties 1, 4 , 5

appear to hold
• But not properties

2 and 3
• 2 fails because

the first list cell
cannot be
deleted

• Even a simple
fix shows
another error,
in which the
last two cells
share a value
equal to v

Underlying technologies

• The Jackson et al. tools have been based on (primarily) two
different technologies
– Model checking: explicit state space enumeration, BDD-

based symbolic model checking
– Constraint satisfaction (boolean satisfiability): stochastic

(WalkSAT), deterministic (Davis-Putnam, SATO, RelSAT)
• They generally use some form of bounded checking based on

the small scope hypothesis, which “argues that a high
proportion of bugs can be found by testing the program for all
test inputs within some small scope. … If the hypothesis holds,
it follows that it is more effective to do systematic testing within a
small scope than to generate fewer test inputs of a larger
scope.” [Andoni et al.]

