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Major results in software design:
an historical overview

• Managing complexity
• Stepwise refinement and top-down design

– Relatively brief tangent: proofs of correctness
• Coupling, cohesion
• Information hiding
• Layering
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Managing complexity: Dijkstra

• The competent programmer is fully aware of the limited size of 
his own skull.

• Software is so complex that our poor head cannot cope with it at
all. Therefore, we have to use all possible means and methods 
to try to control this complexity.

• The technique of mastering complexity has been known since 
ancient times: Divide et impera (Divide and Rule).  

• …as soon as the programmer only needs to consider 
intellectually manageable programs, the alternatives he is 
choosing from are much, much easier to cope with. 
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Managing complexity: others

• Brooks
– Software entities are more complex for their size than perhaps any 

other human construct, because no two parts are alike (at least 
above the statement level).  If they are, we make the two similar 
parts into one… In this respect software systems differ profoundly 
from computers, buildings, or automobiles, where repeated 
elements abound.

• Booch
– The complexity of the software systems we are asked to develop is 

increasing, yet there are basic limits upon our ability to cope with 
this complexity.  How then do we resolve this predicament?

• Perlis
– If you have a procedure with 10 parameters, you probably missed 

some.
– There are two ways to write error-free programs; only the third one 

works. 
– Simplicity does not precede complexity, but follows it.
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Stepwise refinement and top-down design 
[Dijkstra, Wirth, Hoare, et al.]

• Pseudo-code is repeatedly expanded until the 
translation into programming language code is 
obvious

• Define top-level module 
– Choose a module to be decomposed
– Use stepwise refinement to decompose into 

smaller modules
– Repeat until all modules are easily understood
– Use stepwise refinement to complete low-level 

modules
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• while not sorted do
find inversion;
swap

end

• lex;
parse;
check semantics;
generate code
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Structured programming 

• Dijkstra’s concerns about the goto statement were based 
largely on the notion that the static (syntactic) structure of the 
program and the dynamic (execution) structure of the program 
were wildly different, making understanding and reasoning 
difficult

• An oft-cited theorem, due to Böhm and Jacopini, is that the 
goto statement is not needed – all programs can be written 
using sequencing, conditionals, and loops as the control 
structures
– The proof is constructive, converting arbitrary flow charts to 

structured flow charts
• However, the proof does not genuinely address Dijkstra’s

concern
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Basics of program correctness

• Very closely related to stepwise refinement: make precise the 
meaning of programs

• In a logic, write down (this is often called the specification)
– the effect of the computation that the program is required to 

perform (the postcondition Q)
– any constraints on the input environment to allow this 

computation (the precondition P)
• Associate precise (logical) meaning to each construct in the 

programming language (this is done per-language, not per-
program)

• Reason (usually backwards) that the logical conditions are 
satisfied by the program S

• A Hoare triple is a predicate {P}S{Q} that is true whenever P
holds and the execution of S guarantees that Q holds 
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Examples

• {true}
y := x * x;

{y >= 0}

• {x <> 0}
y := x * x;

{y > 0}

• {x > 0}
x := x + 1;

{x > 1}
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More examples

• {x = k}
if (x < 0) x := -x endif;

{    ?    }

• {    ?    }
x := 3;

{ x = 8 }
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Strongest postconditions
[example from Aldrich and perhaps from Leino]

The following are all valid Hoare triples
• {x = 5} x := x * 2 { true }

• {x = 5} x := x * 2 { x > 0 }

• {x = 5} x := x * 2 { x = 10 || x = 5 }

• {x = 5} x := x * 2 { x = 10 }

• Which is the most useful, interesting, valuable?  
Why?
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Weakest preconditions
[example from Aldrich and perhaps from Leino]

Here are a number of valid Hoare Triples
• {x = 5 && y = 10} z := x / y { z < 1 }

• {x < y && y > 0} z := x / y { z < 1 }

• {y ≠ 0 && x / y < 1} z := x / y { z < 1 }

• The last one is the most useful because it allows us to invoke 
the program in the most general condition

• It is called the weakest precondition, wp(S,Q) of S with respect 
to Q
– If {P} S {Q} and for all P’ such that P’ => P, then P is 
wp(S,Q)
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Sequential execution

• What if there are multiple 
statements
– {P} S1;S2 {Q}

• We create an intermediate 
assertion
– {P} S1 {A} S2 {Q}

• We reason (usually) 
backwards to prove the 
Hoare triples

• A formalization of this 
approach essential defines 
the ; operator in most 
programming languages

– {x > 0}
y := x*2;
z := y/2

{z > 0}

– {x > 0}
y := x*2;

{y > 0}
z := y/2

{z > 0}
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Conditional execution

• {P}
if C then S1

else S2
endif

{Q}

• Must consider both 
branches

• Ex: compute the 
maximum of two 
variables x and y

{true}
if x >= y then
max := x

else
max := y

fi
{(max >= x ∧ max >= y)}
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Hoare logic rule: conditional

{P} if C then S1 else S2 {Q}
≡

{P ∧ C}S1{Q} ∧ {P ∧ ¬ C}S2{Q}
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Be careful!

• {true}
max := abs(x)+abs(y);

{max >= x ∧ max >= y}

• This predicate holds, but we don’t “want” it to
– The postcondition is written in a way that permits 

satisfying programs that don’t compute the 
maximum 

– In essence, every specification is satisfied by an 
infinite number of programs and vice versa

• The “right” postcondition is
– {(max = x ∨ max = y)

∧ (max >= x ∧ max >= y)}
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Assignment statements

• We’ve been highly informal in dealing with 
assignment statements

• What does the statement x := E mean?
– {Q(E)} x := E {Q(x)}

– If we knew something to be true about E before 
the assignment, then we know it to be true about x
after the assignment (assuming no side-effects)
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Examples

{y > 0}
x := y

{x > 0}

{x > 0} [Q(E) ≡ x + 1 > 1 ≡ x > 0 ]
x := x + 1;

{x > 1} [Q(x) ≡ x > 1]
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More examples

{    ?    }
x := y + 5

{x > 0}

{x = A ∧ y = B }
t := x;
x := y;
y := t

{x = B ∧ y = A }
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Loops

• {P} while B do S {Q}
• We can try to unroll this into

– {P ∧ ¬ B} S {Q} ∨
{P ∧ B} S {Q ∧ ¬B} ∨
{P ∧ B} S {Q ∧ B} S {Q ∧ ¬B} ∨ …

• But we don’t know how far to unroll, since we don’t know how many 
times the loop can execute

• The most common approach to this is to find a loop invariant, which is a 
predicate that

– is true each time the loop head is reached (on entry and after each 
iteration) 

– and helps us prove the postcondition of the loop

– It approximates the fixed point of the loop
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Loop invariant for {P} while B do S {Q}

• Find I such that
– P ⇒ I -Invariant is correct on

entry
– {B ∧ I} S {I} –Invariant is maintained
– {¬B ∧ I} ⇒ Q –Loop termination proves Q

• Example

{n > 0}
x := a[1];
i := 2;
while i <= n do
if a[i] > x then x := a[i];
i := i + 1;

end;
{x = max(a[1],…,a[n])
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Termination

• Proofs with loop invariants do not guarantee that the loop 
terminates, only that it does produce the proper postcondition if
it terminates – this is called weak correctness

• A Hoare triple for which termination has been proven is strongly 
correct

• Proofs of termination are usually performed separately from 
proofs of correctness, and they are usually performed through 
well-founded sets 
– In this example it’s easy, since i is bounded by n, and i

increases at each iteration
• Historically, the interest has been in proving that a program 

does terminate: but many important programs now are intended 
not to terminate
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Correctness of data structures

• Primarily due to Hoare; 
figures from Wulf et al.

• Prove the specifications on 
the abstract operations (e.g., 
Pusha)

• Prove the specifications on 
the concrete operations 
(e.g., Pushc)

• Prove the relation between 
abstract and concrete 
operations (e.g., R), the 
representation mapping

<x1,x2> <x,x1,x2>

Pusha(S,x)

S.sp = 2
S.v =

[x2,x1,?,?,...]

S.sp = 3
S.v =

[x2,x1,x,?,...]

Pushc(S,x)

R R

Example

{¬full(Sa)} {¬full(R(Sc))} 
Pusha(Sa,x)      Pushc(Sc,x)

{Sa=<x>||S’a} {R(Sc) = <x>||
R(S’c)}
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So what?

• It lays a foundation for
– Thinking about programs more precisely
– Applying techniques like these in limited, critical 

situations
– Development of some modern design, 

specification and analysis approaches that seem 
to have value in more situations
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Slight aside: Composition

• Divide and conquer.  Separate your concerns.  Yes.  
But sometimes the conquered tribes must be reunited 
under the conquering ruler, and the separated 
concerns must be combined to serve a single 
purpose.       —M. Jackson, 1995

• Jackson’s view of composition as printing with four-
color separation

• Composition in programs is not as easy as 
conjunction in logic
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Benefits of decomposition

• Decrease size of tasks
• Support independent testing and analysis
• Separate work assignments
• Ease understanding

• In principle, can significantly reduce paths to consider 
by introducing one interface
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Accommodating change

• “…accept the fact of change as a way of life, rather 
than an untoward and annoying exception.”

—Brooks, 1974
• Software that does not change becomes useless 

over time. —Belady and Lehman
• Internet time makes the need to accommodate 

change even more apparent
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Anticipating change

• It is generally believed that to accommodate change 
one must anticipate possible changes
– Counterpoint: Extreme Programming

• By anticipating (and perhaps prioritizing) changes, 
one defines additional criteria for guiding the design 
activity

• It is not possible to anticipate all changes 
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Properties of design

• Cohesion
• Coupling
• Complexity
• Correctness
• Correspondence

• Makes designs “better”, one presumes
• Worth paying attention to
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Cohesion

• The reason that elements are found together in a 
module
– Ex: coincidental, temporal, functional, …

• The details aren’t critical, but the intent is useful
• During maintenance, one of the major structural 

degradations is in cohesion
– Need for “logical remodularization”
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Coupling

• Strength of interconnection between modules
• Hierarchies are touted as a wonderful coupling 

structure, limiting interconnections
– But don’t forget about composition, which requires 

some kind of coupling
• Coupling also degrades over time

– “I just need one function from that module…”
– Low coupling vs. no coupling
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Unnecessary coupling hurts

• Propagates effects of changes more widely
• Harder to understand interfaces (interactions)
• Harder to understand the design
• Complicates managerial tasks
• Complicates or precludes reuse
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It’s easy to...

• ...reduce coupling by calling a system a single 
module

• …increase cohesion by calling a system a single 
module

• No satisfactory measure of coupling
– Either across modules or across a system
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Complexity

• Simpler designs are better, all else being equal
• But, again, no useful measures of design/program 

complexity exist
– There are dozens of such measures; e.g., 

McCabe’s cyclomatic complexity = E - N + p

• E = the number of edges of the CFG
• N = the number of nodes of the CFG
• p = the number of connected components

– My understanding is that, to the first order, most of 
these measures are linearly related to “lines of 
code”
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Correctness

• Well, yeah
• Even if you “prove” modules are correct, composing 

the modules’ behaviors to determine the system’s 
behavior is hard

• Leveson and others have shown clearly that a 
system can fail even when each of the pieces work 
properly – this is because many systems have 
“emergent” properties

• Arguments are common about the need to build 
“security” and “safety” and … in from the beginning
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Correspondence

• “Problem-program mapping”
• The way in which the design is associated with the 

requirements
• The idea is that the simpler the mapping, the easier it 

will be to accommodate change in the design when 
the requirements change

• M. Jackson: problem frames
– In the style of Polya
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Physical structure

• Almost all the literature focuses on logical structures 
in design

• But physical structure plays a big role in practice
– Sharing
– Separating work assignments
– Degradation over time

• Why so little attention paid to this?
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Information hiding

• Information hiding is perhaps the most important 
intellectual tool developed to support software design 
[Parnas 1972] 
– Makes the anticipation of change a centerpiece in 

decomposition into modules
• Provides the fundamental motivation for abstract data 

type (ADT) languages
– And thus a key idea in the OO world, too

• The conceptual basis is key
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Basics of information hiding

• Modularize based on anticipated change
– Fundamentally different from Brooks’ approach in 

OS/360 (see old and new MMM)
• Separate interfaces from implementations

– Implementations capture decisions likely to 
change

– Interfaces capture decisions unlikely to change
– Clients know only interface, not implementation
– Implementations know only interface, not clients

• Modules are also work assignments
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Anticipated changes

• The most common anticipated change is “change of 
representation”
– Anticipating changing the representation of data 

and associated functions (or just functions)
– Again, a key notion behind abstract data types

• Ex:  
– Cartesian vs. polar coordinates; stacks as linked 

lists vs. arrays; packed vs. unpacked strings
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Claim

• We less frequently change representations than we used to
– We have significantly more knowledge about data structure 

design than we did 25 years ago
– Memory is less often a problem than it was previously, since 

it’s much less expensive
• Therefore, we should think twice about anticipating that 

representations will change
– This is important, since we can’t simultaneously anticipate all 

changes
– Ex: Changing the representation of null-terminated strings in 

Unix systems wouldn’t be sensible
• And this doesn’t represent a stupid design decision
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Other anticipated changes?

• Information hiding isn’t only ADTs
• Algorithmic changes

– (These are almost always part and parcel of ADT-
based decompositions)

– Monolithic to incremental algorithms
– Improvements in algorithms

• Replacement of hardware sensors
– Ex: better altitude sensors

• More?
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Central premise I

• We can effectively anticipate changes
– Unanticipated changes require changes to interfaces or 

(more commonly) simultaneous changes to multiple modules
• How accurate is this premise?

– We have no idea
– There is essentially no research about whether anticipated 

changes happen
– Nor do we have disciplined ways to figure out how to better 

anticipate changes
– Nor do we have any way to assess the opportunity cost of 

making one decision over another
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The A-7 Project

• In the late 1970’s, Parnas led a project to redesign 
the software for the A-7 flight program
– One key aspect was the use of information hiding

• The project had successes, including a much 
improved specification of the system and the 
definition of the SCR requirements language

• But little data about actual changes was gathered
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Central premise II

• Changing an implementation is the best change, 
since it’s isolated

• This may not always be true
– Changing a local implementation may not be easy
– Some global changes are straightforward

• Mechanically or systematically
– Miller’s simultaneous text editing
– Griswold’s work on information transparency
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Central premise III

• The semantics of the module must remain 
unchanged when implementations are replaced
– Specifically, the client should not care how the 

interface is implemented by the module
• But what captures the semantics of the module?

– The signature of the interface?  Performance?  
What else?
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Central premise IV

• One implementation can satisfy multiple clients
– Different clients of the same interface that need 

different implementations would be counter to the 
principle of information hiding

• Clients should not care about implementations, 
as long as they satisfy the interface

– Kiczales’ work on open implementations
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Central premise V

• It is implied that information hiding can be recursively 
applied

• Is this true?
• If not, what are the consequences?
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Information hiding reprise

• It’s probably the most important design technique we 
know

• And it’s broadly useful
• It raised consciousness about change
• But one needs to evaluate the premises in specific 

situations to determine the actual benefits (well, the 
actual potential benefits)
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Information Hiding and OO

• Are these the same? Not really
– OO classes are chosen based on the domain of 

the problem (in most OO analysis approaches)
– Not necessarily based on change

• But they are obviously related (separating interface 
from implementation, e.g.)

• What is the relationship between sub- and super-
classes?
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Layering [Parnas 79]

• A focus on information hiding modules isn’t enough
• One may also consider abstract machines

– In support of program families
• Systems that have “so much in common that it 

pays to study their common aspects before 
looking at the aspects that differentiate them”

• Still focusing on anticipated change
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The uses relation

• A program A uses a program B if the correctness of A
depends on the presence of a correct version of B

• Requires specification and implementation of A and 
the specification of B

• Again, what is the “specification”?  The interface?  
Implied or informal semantics?
– Can uses be mechanically computed?
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uses vs. invokes

• These relations 
often but do not 
always coincide

• Invocation without 
use: name service 
with cached hints

• Use without 
invocation: 
examples?

ipAddr := cache(hostName);

if wrong(ipAddr,hostName) 
then

ipAddr := lookup(hostName)

endif
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Parnas’ observation

• A non-hierarchical uses relation makes it difficult to 
produce useful subsets of a system
– It also makes testing difficult
– (What about upcalls?)

• So, it is important to design the uses relation
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Criteria for uses(A,B)

• A is essentially simpler because it uses B
• B is not substantially more complex because it does 

not use A
• There is a useful subset containing B but not A
• There is no useful subset containing A but not B
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Layering in THE
(Dijkstra’s layered OS)

• OK, those of you who took OS
• How was layering used, and how does it relate to this 

work?
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Modules and layers interact?

• Information hiding 
modules and 
layers are distinct 
concepts

• How and where do 
they overlap in a 
system?

Process Creation

Segment Mgmt.

Process Mgmt.

Segment Creation
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Language support

• We have lots of language support for information 
hiding modules
– C++ classes, Ada packages, etc.

• We have essentially no language support for layering
– Operating systems provide support, primarily for 

reasons of protection, not abstraction
– Big performance cost to pay for “just” abstraction


