
1

UW CSE 503 David Notkin ● Winter 2008 1

Major results in software design:
an historical overview

• Managing complexity
• Stepwise refinement and top-down design

– Relatively brief tangent: proofs of correctness
• Coupling, cohesion
• Information hiding
• Layering

UW CSE 503 David Notkin ● Winter 2008 2

Managing complexity: Dijkstra

• The competent programmer is fully aware of the limited size of
his own skull.

• Software is so complex that our poor head cannot cope with it at
all. Therefore, we have to use all possible means and methods
to try to control this complexity.

• The technique of mastering complexity has been known since
ancient times: Divide et impera (Divide and Rule).

• …as soon as the programmer only needs to consider
intellectually manageable programs, the alternatives he is
choosing from are much, much easier to cope with.

UW CSE 503 David Notkin ● Winter 2008 3

Managing complexity: others

• Brooks
– Software entities are more complex for their size than perhaps any

other human construct, because no two parts are alike (at least
above the statement level). If they are, we make the two similar
parts into one… In this respect software systems differ profoundly
from computers, buildings, or automobiles, where repeated
elements abound.

• Booch
– The complexity of the software systems we are asked to develop is

increasing, yet there are basic limits upon our ability to cope with
this complexity. How then do we resolve this predicament?

• Perlis
– If you have a procedure with 10 parameters, you probably missed

some.
– There are two ways to write error-free programs; only the third one

works.
– Simplicity does not precede complexity, but follows it.

UW CSE 503 David Notkin ● Winter 2008 4

Stepwise refinement and top-down design
[Dijkstra, Wirth, Hoare, et al.]

• Pseudo-code is repeatedly expanded until the
translation into programming language code is
obvious

• Define top-level module
– Choose a module to be decomposed
– Use stepwise refinement to decompose into

smaller modules
– Repeat until all modules are easily understood
– Use stepwise refinement to complete low-level

modules

2

UW CSE 503 David Notkin ● Winter 2008 5

• while not sorted do
find inversion;
swap

end

• lex;
parse;
check semantics;
generate code

UW CSE 503 David Notkin ● Winter 2008 6

Structured programming

• Dijkstra’s concerns about the goto statement were based
largely on the notion that the static (syntactic) structure of the
program and the dynamic (execution) structure of the program
were wildly different, making understanding and reasoning
difficult

• An oft-cited theorem, due to Böhm and Jacopini, is that the
goto statement is not needed – all programs can be written
using sequencing, conditionals, and loops as the control
structures
– The proof is constructive, converting arbitrary flow charts to

structured flow charts
• However, the proof does not genuinely address Dijkstra’s

concern

UW CSE 503 David Notkin ● Winter 2008 7

Basics of program correctness

• Very closely related to stepwise refinement: make precise the
meaning of programs

• In a logic, write down (this is often called the specification)
– the effect of the computation that the program is required to

perform (the postcondition Q)
– any constraints on the input environment to allow this

computation (the precondition P)
• Associate precise (logical) meaning to each construct in the

programming language (this is done per-language, not per-
program)

• Reason (usually backwards) that the logical conditions are
satisfied by the program S

• A Hoare triple is a predicate {P}S{Q} that is true whenever P
holds and the execution of S guarantees that Q holds

UW CSE 503 David Notkin ● Winter 2008 8

Examples

• {true}
y := x * x;

{y >= 0}

• {x <> 0}
y := x * x;

{y > 0}

• {x > 0}
x := x + 1;

{x > 1}

3

UW CSE 503 David Notkin ● Winter 2008 9

More examples

• {x = k}
if (x < 0) x := -x endif;

{ ? }

• { ? }
x := 3;

{ x = 8 }

UW CSE 503 David Notkin ● Winter 2008 10

Strongest postconditions
[example from Aldrich and perhaps from Leino]

The following are all valid Hoare triples
• {x = 5} x := x * 2 { true }

• {x = 5} x := x * 2 { x > 0 }

• {x = 5} x := x * 2 { x = 10 || x = 5 }

• {x = 5} x := x * 2 { x = 10 }

• Which is the most useful, interesting, valuable?
Why?

UW CSE 503 David Notkin ● Winter 2008 11

Weakest preconditions
[example from Aldrich and perhaps from Leino]

Here are a number of valid Hoare Triples
• {x = 5 && y = 10} z := x / y { z < 1 }

• {x < y && y > 0} z := x / y { z < 1 }

• {y ≠ 0 && x / y < 1} z := x / y { z < 1 }

• The last one is the most useful because it allows us to invoke
the program in the most general condition

• It is called the weakest precondition, wp(S,Q) of S with respect
to Q
– If {P} S {Q} and for all P’ such that P’ => P, then P is
wp(S,Q)

UW CSE 503 David Notkin ● Winter 2008 12

Sequential execution

• What if there are multiple
statements
– {P} S1;S2 {Q}

• We create an intermediate
assertion
– {P} S1 {A} S2 {Q}

• We reason (usually)
backwards to prove the
Hoare triples

• A formalization of this
approach essential defines
the ; operator in most
programming languages

– {x > 0}
y := x*2;
z := y/2

{z > 0}

– {x > 0}
y := x*2;

{y > 0}
z := y/2

{z > 0}

4

UW CSE 503 David Notkin ● Winter 2008 13

Conditional execution

• {P}
if C then S1

else S2
endif

{Q}

• Must consider both
branches

• Ex: compute the
maximum of two
variables x and y

{true}
if x >= y then
max := x

else
max := y

fi
{(max >= x ∧ max >= y)}

UW CSE 503 David Notkin ● Winter 2008 14

Hoare logic rule: conditional

{P} if C then S1 else S2 {Q}
≡

{P ∧ C}S1{Q} ∧ {P ∧ ¬ C}S2{Q}

UW CSE 503 David Notkin ● Winter 2008 15

Be careful!

• {true}
max := abs(x)+abs(y);

{max >= x ∧ max >= y}

• This predicate holds, but we don’t “want” it to
– The postcondition is written in a way that permits

satisfying programs that don’t compute the
maximum

– In essence, every specification is satisfied by an
infinite number of programs and vice versa

• The “right” postcondition is
– {(max = x ∨ max = y)

∧ (max >= x ∧ max >= y)}

UW CSE 503 David Notkin ● Winter 2008 16

Assignment statements

• We’ve been highly informal in dealing with
assignment statements

• What does the statement x := E mean?
– {Q(E)} x := E {Q(x)}

– If we knew something to be true about E before
the assignment, then we know it to be true about x
after the assignment (assuming no side-effects)

5

UW CSE 503 David Notkin ● Winter 2008 17

Examples

{y > 0}
x := y

{x > 0}

{x > 0} [Q(E) ≡ x + 1 > 1 ≡ x > 0]
x := x + 1;

{x > 1} [Q(x) ≡ x > 1]

UW CSE 503 David Notkin ● Winter 2008 18

More examples

{ ? }
x := y + 5

{x > 0}

{x = A ∧ y = B }
t := x;
x := y;
y := t

{x = B ∧ y = A }

UW CSE 503 David Notkin ● Winter 2008 19

Loops

• {P} while B do S {Q}
• We can try to unroll this into

– {P ∧ ¬ B} S {Q} ∨
{P ∧ B} S {Q ∧ ¬B} ∨
{P ∧ B} S {Q ∧ B} S {Q ∧ ¬B} ∨ …

• But we don’t know how far to unroll, since we don’t know how many
times the loop can execute

• The most common approach to this is to find a loop invariant, which is a
predicate that

– is true each time the loop head is reached (on entry and after each
iteration)

– and helps us prove the postcondition of the loop

– It approximates the fixed point of the loop

UW CSE 503 David Notkin ● Winter 2008 20

Loop invariant for {P} while B do S {Q}

• Find I such that
– P ⇒ I -Invariant is correct on

entry
– {B ∧ I} S {I} –Invariant is maintained
– {¬B ∧ I} ⇒ Q –Loop termination proves Q

• Example

{n > 0}
x := a[1];
i := 2;
while i <= n do
if a[i] > x then x := a[i];
i := i + 1;

end;
{x = max(a[1],…,a[n])

6

UW CSE 503 David Notkin ● Winter 2008 21

Termination

• Proofs with loop invariants do not guarantee that the loop
terminates, only that it does produce the proper postcondition if
it terminates – this is called weak correctness

• A Hoare triple for which termination has been proven is strongly
correct

• Proofs of termination are usually performed separately from
proofs of correctness, and they are usually performed through
well-founded sets
– In this example it’s easy, since i is bounded by n, and i

increases at each iteration
• Historically, the interest has been in proving that a program

does terminate: but many important programs now are intended
not to terminate

UW CSE 503 David Notkin ● Winter 2008 22

Correctness of data structures

• Primarily due to Hoare;
figures from Wulf et al.

• Prove the specifications on
the abstract operations (e.g.,
Pusha)

• Prove the specifications on
the concrete operations
(e.g., Pushc)

• Prove the relation between
abstract and concrete
operations (e.g., R), the
representation mapping

<x1,x2> <x,x1,x2>

Pusha(S,x)

S.sp = 2
S.v =

[x2,x1,?,?,...]

S.sp = 3
S.v =

[x2,x1,x,?,...]

Pushc(S,x)

R R

Example

{¬full(Sa)} {¬full(R(Sc))}
Pusha(Sa,x) Pushc(Sc,x)

{Sa=<x>||S’a} {R(Sc) = <x>||
R(S’c)}

UW CSE 503 David Notkin ● Winter 2008 23

So what?

• It lays a foundation for
– Thinking about programs more precisely
– Applying techniques like these in limited, critical

situations
– Development of some modern design,

specification and analysis approaches that seem
to have value in more situations

UW CSE 503 David Notkin ● Winter 2008 24

Slight aside: Composition

• Divide and conquer. Separate your concerns. Yes.
But sometimes the conquered tribes must be reunited
under the conquering ruler, and the separated
concerns must be combined to serve a single
purpose. —M. Jackson, 1995

• Jackson’s view of composition as printing with four-
color separation

• Composition in programs is not as easy as
conjunction in logic

7

UW CSE 503 David Notkin ● Winter 2008 25

Benefits of decomposition

• Decrease size of tasks
• Support independent testing and analysis
• Separate work assignments
• Ease understanding

• In principle, can significantly reduce paths to consider
by introducing one interface

UW CSE 503 David Notkin ● Winter 2008 26

Accommodating change

• “…accept the fact of change as a way of life, rather
than an untoward and annoying exception.”

—Brooks, 1974
• Software that does not change becomes useless

over time. —Belady and Lehman
• Internet time makes the need to accommodate

change even more apparent

UW CSE 503 David Notkin ● Winter 2008 27

Anticipating change

• It is generally believed that to accommodate change
one must anticipate possible changes
– Counterpoint: Extreme Programming

• By anticipating (and perhaps prioritizing) changes,
one defines additional criteria for guiding the design
activity

• It is not possible to anticipate all changes

UW CSE 503 David Notkin ● Winter 2008 28

Properties of design

• Cohesion
• Coupling
• Complexity
• Correctness
• Correspondence

• Makes designs “better”, one presumes
• Worth paying attention to

8

UW CSE 503 David Notkin ● Winter 2008 29

Cohesion

• The reason that elements are found together in a
module
– Ex: coincidental, temporal, functional, …

• The details aren’t critical, but the intent is useful
• During maintenance, one of the major structural

degradations is in cohesion
– Need for “logical remodularization”

UW CSE 503 David Notkin ● Winter 2008 30

Coupling

• Strength of interconnection between modules
• Hierarchies are touted as a wonderful coupling

structure, limiting interconnections
– But don’t forget about composition, which requires

some kind of coupling
• Coupling also degrades over time

– “I just need one function from that module…”
– Low coupling vs. no coupling

UW CSE 503 David Notkin ● Winter 2008 31

Unnecessary coupling hurts

• Propagates effects of changes more widely
• Harder to understand interfaces (interactions)
• Harder to understand the design
• Complicates managerial tasks
• Complicates or precludes reuse

UW CSE 503 David Notkin ● Winter 2008 32

It’s easy to...

• ...reduce coupling by calling a system a single
module

• …increase cohesion by calling a system a single
module

• No satisfactory measure of coupling
– Either across modules or across a system

9

UW CSE 503 David Notkin ● Winter 2008 33

Complexity

• Simpler designs are better, all else being equal
• But, again, no useful measures of design/program

complexity exist
– There are dozens of such measures; e.g.,

McCabe’s cyclomatic complexity = E - N + p

• E = the number of edges of the CFG
• N = the number of nodes of the CFG
• p = the number of connected components

– My understanding is that, to the first order, most of
these measures are linearly related to “lines of
code”

UW CSE 503 David Notkin ● Winter 2008 34

Correctness

• Well, yeah
• Even if you “prove” modules are correct, composing

the modules’ behaviors to determine the system’s
behavior is hard

• Leveson and others have shown clearly that a
system can fail even when each of the pieces work
properly – this is because many systems have
“emergent” properties

• Arguments are common about the need to build
“security” and “safety” and … in from the beginning

UW CSE 503 David Notkin ● Winter 2008 35

Correspondence

• “Problem-program mapping”
• The way in which the design is associated with the

requirements
• The idea is that the simpler the mapping, the easier it

will be to accommodate change in the design when
the requirements change

• M. Jackson: problem frames
– In the style of Polya

UW CSE 503 David Notkin ● Winter 2008 36

Physical structure

• Almost all the literature focuses on logical structures
in design

• But physical structure plays a big role in practice
– Sharing
– Separating work assignments
– Degradation over time

• Why so little attention paid to this?

10

UW CSE 503 David Notkin ● Winter 2008 37

Information hiding

• Information hiding is perhaps the most important
intellectual tool developed to support software design
[Parnas 1972]
– Makes the anticipation of change a centerpiece in

decomposition into modules
• Provides the fundamental motivation for abstract data

type (ADT) languages
– And thus a key idea in the OO world, too

• The conceptual basis is key

UW CSE 503 David Notkin ● Winter 2008 38

Basics of information hiding

• Modularize based on anticipated change
– Fundamentally different from Brooks’ approach in

OS/360 (see old and new MMM)
• Separate interfaces from implementations

– Implementations capture decisions likely to
change

– Interfaces capture decisions unlikely to change
– Clients know only interface, not implementation
– Implementations know only interface, not clients

• Modules are also work assignments

UW CSE 503 David Notkin ● Winter 2008 39

Anticipated changes

• The most common anticipated change is “change of
representation”
– Anticipating changing the representation of data

and associated functions (or just functions)
– Again, a key notion behind abstract data types

• Ex:
– Cartesian vs. polar coordinates; stacks as linked

lists vs. arrays; packed vs. unpacked strings

UW CSE 503 David Notkin ● Winter 2008 40

Claim

• We less frequently change representations than we used to
– We have significantly more knowledge about data structure

design than we did 25 years ago
– Memory is less often a problem than it was previously, since

it’s much less expensive
• Therefore, we should think twice about anticipating that

representations will change
– This is important, since we can’t simultaneously anticipate all

changes
– Ex: Changing the representation of null-terminated strings in

Unix systems wouldn’t be sensible
• And this doesn’t represent a stupid design decision

11

UW CSE 503 David Notkin ● Winter 2008 41

Other anticipated changes?

• Information hiding isn’t only ADTs
• Algorithmic changes

– (These are almost always part and parcel of ADT-
based decompositions)

– Monolithic to incremental algorithms
– Improvements in algorithms

• Replacement of hardware sensors
– Ex: better altitude sensors

• More?

UW CSE 503 David Notkin ● Winter 2008 42

Central premise I

• We can effectively anticipate changes
– Unanticipated changes require changes to interfaces or

(more commonly) simultaneous changes to multiple modules
• How accurate is this premise?

– We have no idea
– There is essentially no research about whether anticipated

changes happen
– Nor do we have disciplined ways to figure out how to better

anticipate changes
– Nor do we have any way to assess the opportunity cost of

making one decision over another

UW CSE 503 David Notkin ● Winter 2008 43

The A-7 Project

• In the late 1970’s, Parnas led a project to redesign
the software for the A-7 flight program
– One key aspect was the use of information hiding

• The project had successes, including a much
improved specification of the system and the
definition of the SCR requirements language

• But little data about actual changes was gathered

UW CSE 503 David Notkin ● Winter 2008 44

Central premise II

• Changing an implementation is the best change,
since it’s isolated

• This may not always be true
– Changing a local implementation may not be easy
– Some global changes are straightforward

• Mechanically or systematically
– Miller’s simultaneous text editing
– Griswold’s work on information transparency

12

UW CSE 503 David Notkin ● Winter 2008 45

Central premise III

• The semantics of the module must remain
unchanged when implementations are replaced
– Specifically, the client should not care how the

interface is implemented by the module
• But what captures the semantics of the module?

– The signature of the interface? Performance?
What else?

UW CSE 503 David Notkin ● Winter 2008 46

Central premise IV

• One implementation can satisfy multiple clients
– Different clients of the same interface that need

different implementations would be counter to the
principle of information hiding

• Clients should not care about implementations,
as long as they satisfy the interface

– Kiczales’ work on open implementations

UW CSE 503 David Notkin ● Winter 2008 47

Central premise V

• It is implied that information hiding can be recursively
applied

• Is this true?
• If not, what are the consequences?

UW CSE 503 David Notkin ● Winter 2008 48

Information hiding reprise

• It’s probably the most important design technique we
know

• And it’s broadly useful
• It raised consciousness about change
• But one needs to evaluate the premises in specific

situations to determine the actual benefits (well, the
actual potential benefits)

13

UW CSE 503 David Notkin ● Winter 2008 49

Information Hiding and OO

• Are these the same? Not really
– OO classes are chosen based on the domain of

the problem (in most OO analysis approaches)
– Not necessarily based on change

• But they are obviously related (separating interface
from implementation, e.g.)

• What is the relationship between sub- and super-
classes?

UW CSE 503 David Notkin ● Winter 2008 50

Layering [Parnas 79]

• A focus on information hiding modules isn’t enough
• One may also consider abstract machines

– In support of program families
• Systems that have “so much in common that it

pays to study their common aspects before
looking at the aspects that differentiate them”

• Still focusing on anticipated change

UW CSE 503 David Notkin ● Winter 2008 51

The uses relation

• A program A uses a program B if the correctness of A
depends on the presence of a correct version of B

• Requires specification and implementation of A and
the specification of B

• Again, what is the “specification”? The interface?
Implied or informal semantics?
– Can uses be mechanically computed?

UW CSE 503 David Notkin ● Winter 2008 52

uses vs. invokes

• These relations
often but do not
always coincide

• Invocation without
use: name service
with cached hints

• Use without
invocation:
examples?

ipAddr := cache(hostName);

if wrong(ipAddr,hostName)
then

ipAddr := lookup(hostName)

endif

14

UW CSE 503 David Notkin ● Winter 2008 53

Parnas’ observation

• A non-hierarchical uses relation makes it difficult to
produce useful subsets of a system
– It also makes testing difficult
– (What about upcalls?)

• So, it is important to design the uses relation

UW CSE 503 David Notkin ● Winter 2008 54

Criteria for uses(A,B)

• A is essentially simpler because it uses B
• B is not substantially more complex because it does

not use A
• There is a useful subset containing B but not A
• There is no useful subset containing A but not B

UW CSE 503 David Notkin ● Winter 2008 55

Layering in THE
(Dijkstra’s layered OS)

• OK, those of you who took OS
• How was layering used, and how does it relate to this

work?

UW CSE 503 David Notkin ● Winter 2008 56

Modules and layers interact?

• Information hiding
modules and
layers are distinct
concepts

• How and where do
they overlap in a
system?

Process Creation

Segment Mgmt.

Process Mgmt.

Segment Creation

15

UW CSE 503 David Notkin ● Winter 2008 57

Language support

• We have lots of language support for information
hiding modules
– C++ classes, Ada packages, etc.

• We have essentially no language support for layering
– Operating systems provide support, primarily for

reasons of protection, not abstraction
– Big performance cost to pay for “just” abstraction

