CSES03: Software Engineering

David Notkin
University of Washington
Computer Science & Engineering
Spring 2006

A Michael Jackson presentation

+ The following slides are from his keynote
at ICSE 1995

©

The World

and

The Machine

Michael Jackson

MAJ Consulting Ltd and AT&T Bell Laboatorics
1CSE-17 Seattle 28th April 1995

Ways of Looking at Software

+ ‘Programming should be literate’

+ ‘... they regarded my programs as logical poems ...’
* ‘The goal of any system is organisational change’

+ ‘Software development is engineering’

= Because we make machines to serve useful
purposes in the world

= The problem is in the World

+ The Machine is the solution

WHAT and HOW

+ WHAT does an automobile do?

roads where its driver directs it to go

« WHAT is in the world, HOW is in the machine

« It carries people and their baggage, travelling over

The Machine, the Model, and the World

The The
Compute i) ooao
System ‘Model O i O

The Real World

* Formal Methods concem the left arrow
+ We have no theory for the right arrow

Brian Cantwell Smith; The Limits of Correciness

Talking about the World and the Machine

To develop software we must talk both
about the World and about the Machine

But it’s hard to maintain the right balance
between these two universes of discourse

+ The relationship between them is varied
and often subtle

= Often we have personal preferences to
exploit or resist

Three Topics and a Button

» 4 Facets of the Relationship
= 4 Kinds of Denial of the World
* 4 Principles for Accepting the World

= a Button:

4 Facets of the Relationship

Modelling:
the Machine as a model of the World

Interface:
what the Machine shares with the World

Engineering:
how the Machine changes the World

Problem:
the structure the Machine must have to
fit the problem in the World

Modelling a Reality

« ‘An SADT system description is called a “model” ...
* R L Ackoff (Scientific Method, 1962):

» Iconic models — pictures, 3-D representations,
eg a child’s model farm

= Analytic models — manipulable formal
descriptions, eg differential equations
forming an economic model

= Analogic models — an analogous reality,
eg an electrical network modelling the
flow of water in pipes

« Software models are analogic: eg, a database,
an assemblage of objects, a process network

The Machine As a Model of the World

Authors, A-Records,
Novels, N-Records,
PublishedBy PointsTo
Alx) = ‘xis an Author A{x) = xis A-record
N(x) = 'x is a Novel' N(x) = x is N-Record
Pxy) Ply)
='xis PublishedBy y' =% PointsToy'
W& N{x)*
Sty Aly) e
Pxy)

Modelling and D

+ A data model fragment:

Published
By

* Three sets of descriptions:

Descriptions
True of
the World

Descriptions
True of
the Machine

Non-Modelling and (D

+ Both the World and the Machine have properties
that are private and not shared

+ Record Deletion
+ Normalisation

« Multiple Authors
« Anonymous Works

« Record Sequencing
+ Null Field Values

« Multiple Pseudonyms
+ Linked Novels

The Machine — World Interface

Shared phenomena: events, other shared individuals,
facis visible in both domains

No communication without sharing:

is ‘really’ ...
Royal Mail E %
shared event shared evenr
‘post lerrer” ‘deliver letrer”

Shared Phenomena

Operator’s Panel Domain Circnits and Contacts Domain

+ Shared phenomena:

elevers — «Switches
*FlipUpevents — « TumOff events
*FlipDownevents — « TumOn events

+ Private phenomena:

+Links + Contacts
+LinkedBy * LocatedOn
(x:Lever, y:Link) (x:Contact, y:Switch)

Shared Phenomena and @

The shared phenomena are in the (small)
intersection between two sets of phenomena:

PM
Phenomena
of the Machine

PW
Phenomena
of the World

Modelling and Shared Phenomena
+ Sharing phenomena and modelling are different
relationships between the Machine and the World
« Shared phenomena — modelling

+ Any description that is true of the shared
phenomena is a shared descriptions

= Baut ...
* ... = (modelling — shared phenomena)

= The database shares no phenomena with
the reality it models

Engineering: Requirements,
Specifications, and Programs

The purpose of the Machine is to change the World:
this is the requirement

The required changes are expressible entirely in
terms of phenomena of the World ...

... but not usually entirely in terms of phenomena
shared with the Machine

The final engineering product:
» Machine behaving according to the program ...
= ... thus satisfying the specification and ...

* ... thus ensuring achievement of the requirement

Requirements, Specifications, Programs

PM
Phenomena
of the Machine

PW
Phenomena
of the World

PW nPM
Shared
Phenomena

Requirements Specifications Programs

+ A specification is also a requirerent

+ A specification is also a program

Engineering and

PM
Phenomena
of the Machine

PW
Phenomena
of the World

PW ~PM
Shared
Phenomena

Programs can satisfy specifications only by virtue
of properties of the machine (p/l semantics)

Specifications can satisfy requirements only by
virtue of properties of the world

The engineering is in determining, describing and
exploiting the properties of the world

A Little Engineering Example

Aeroplane,
Runway, etc

on_runway

wheels_tuming wheel_pulses

« R:on_runway > can_reverse

D1: wheel_pulses <> wheels_turning
D2: wheels_turning <> on_runway

+ S8:can_reverse > wheel_pulses

We have: §, D1, D2 + R — is it enough?

Properties of the World

on_mmway can_reverse

wheels_turning wheel_pulses

Requirement
{ ‘. eq

®——_¢@ Properly of the World (?)
@—® Specification

The Problem Facet of the Relationship

+ Soluation structure should reflect problem straucture
= There’s less need for invention
= It’s easier to validate the solution

« Traditional solution structures are often
hierarchical and homogeneous ...

= Procedure hierarchies, class hierarchies, layered
abstract machines, process/dataflow structures

« ... but the World rarely exhibits such structures

A Simple Editing Tool

+ Three requirements:

Editing allows users to create and edit texts

GUI provides convenient and efficient operation

Revision History provides progress reporting by
users and texts

+ The requirements are related by conjunction:
= Editing A GUI A Revision History

= The requirements share phenomena

Two Requirements Sharing Phenomena

Revision Histy

document
open_to_update log_on
save_document delete_document

Sfind_word

Problem Structures
Problems are usually structured as subproblems
that are:
+ heterogeneous
» related by superimposition
= pinned together at shared phenomena
The appropriate metaphor is ...
+ ... not assemblies and sub-assemblies

» ... but CYMK separations in colour printing

The World and Us (1)

“The world is too much with us ...”
— William Wordsworth

4 Kinds of Denial

» How we may deny our involvement
= Denial by Prior Knowledge
+ Denial by Hacking
* Denial by Abstraction

+ Denial by Vagueness

Denial by Prior Knowledge

“We don’t need a requirements capture phase.
The problem is already well-defined; our task is
merely to solve it.”

Automobile designers don’t have a requirements
captuare phase ...

The car shall be able to travel over snowdrifts
and under water

The car shall be able to lift a load of 5 tons

The car shall accommodate 10 passengers each
of weight up to 500 pounds

.. it would be called ‘Rethinking the Motor-car’

Denial by Prior Knowledge
Legitimate only in applications that are both
specialised and standardised

Both bridge-design and automobile design are
specialised

But only automobile design is standardised (human
beings, roads and baggage don’t vary much)

Bridge design is not standardised (each location
has unique characteristics)

Denial by Hacking

« Computers are beautiful and fascinating

“ ... Miss Byron, young as she was, understood its
working and saw the great beauty of the invention.”
Mrs De Morgan, on Ada’s visit to Babbage, 1828

« Applications are often much less interesting

“I came into this job to work with computers, not
to be an amateur stockbroker.”
Member of failed development team, 1993

« The Machine is the developers’ own creation;
the World is not

The Royal Albert Bridge, Saltash

1 K Brunel, Engineer, 1849

Looking at the Problem Context

Orders Billing
Detalls

Accounts
Dept

Custormers|

Warehouse| Stipping
Info

+ Which is the World? Which is the Machine?

* Which do you describe at the next level of DFDs?

Denial by Abstraction

“We come now to the decisive step of mathematical
abstraction: we forget what the symbols stand for.”
Hermann Weyl, quoted by Abelson & Sussman

Abstraction is a valuable intellectual tool ...

« ... but it must not be a rule of life for software
developers

Too much abstraction blinds you to the nature
of many problems

Doing Justice to the Problem

“One tribe always tells the truth and the other always
lies. A traveller meets two men, and asks the first:
“Are you a truth teller?’. The reply is ‘Goom’. The
second says: ‘He said Yes, but he is lying’.

Mariin Gardener, 2nd Book of Puzzles

Abstract answer:
“The reply must always be Yes; so the second
man is a truth-teller, and the first is a liar”

Lucy Jonelis® answer:
“The first man clearly can’t speak English: ‘Goom’
must mean ‘What? or ‘Welcome to our land’.
So the second man is a liar, and the first is a
trath-teller.”

The Package Router

Incoming __——»
Packages

- Reading Station

Sensors at Top
and Bottom _——a"p
of each Pipe ™~
i< Two-position
' S Switchat

each node

s i) R R

Denial by Vagueness

= Central technique:

* Describe the Machine, but imply that
you’re describing the World

= Prerequisite:

» Avoid saying explicitly what is being
described

» Facilitators:

= The modelling relationship (the same
description is true of both)

+ The shared phenomena at the interface
(two sides of the same penny, isn’t it?)

The System and the Real World

“ ... the Z approach is to construct a specification
document which consists of a judicious mix of
informal prose with precise mathematical statements.
... the informal text can be consulted to find out what
aspects of the real world are being described.... The
formal text in the other hand provides the precise
definition of the system and hence can be used to
resolve any ambiguities present in the informal text.”

Machine = system? World = real world?

‘Which is being described?

Talking About the World: 4 Principles

von Neumann’s principle

* Knowing what you're talking about
The principle of reductionism

» Finding the solid ground

The Shanley principle

= Recognising versatility
Montaigne’s principle

= Minding your language

von Neumann’s Principle

“There is no point in using exact methods where
there is no clarity in the concepts and issues to
which they are to be applied.”

von Neumann & Morganstern: Theory of Games

Designations

Mother(x,y) = ‘x is the genetic mother of y’

Formal term = recognition rule

Anticipate interventions of the form:
“It all depends on what you mean by mother”

Aligning a Description

Ordnance
Survey
Tri

Point

« Designated terms and phenomena are like
triangulation points on the map and on the
ground

The Principle of Reductionism
In any informal world many terms — often nouns
in English — are obviously important ...
+ in telephony: calls
* in a meeting-scheduling system: meetings
= in an airline system: flights
... but difficult or even impossible to designate

They must be reduced to elementary
designated phenomena — often events

Reducing Domain Concepts

ioht trip,
Jrig stage
Reduction of Rebuilding of
Informal Terms Defined Tenms

Designated (ake-off, Tand,
Tertos board, disembark

« The rebuilt defined terms are not the original
informal terms

+ Definition is not designation

The Shanley Principle

“In civil engineering design it is presently a
mandatory concept known as the Shanley Design
Criterion to collect several functions into one part.”

Pierre Arnoul de Marneffe, cited by D Knuth, 1974

1940-1945 rockets had separate components for
fuel tank, outer skin, body frame

Saturn-B had a tubular body that was at once its
fuel tank, outer skin, and body frame

It may (or may not) be good to engineer Machines
in this way, but the World is certainly like this!

+ No class hierarchy, no strong typing!

Shanley and Many Descriptions

Editing Requiremert
Operation O requested
ontext T

Revision History Requiremert
Operation O requested
ontext T by user U

GUI Requirements
Operation O requested
by dlicking button B

» One description is not enough

Montaigne’s Principle
“The greater part of this world’s troubles are due
to questions of grammar.”
Demanded for some Government contracts:

“Absolute tense ‘shall’: a binding, measurable
requirement

“Futare tense ‘will’: a reference to the futare, ...
not under control of the system being specified.

“Present tense: for all other verbs”
The distinction is not of tenses, but of moods
+ Optative: desired in the World

= Indicative: true regardiess of the Machine

Indicative and Optative

Natural language distinctions are impractical:
= “I shall drown, no-one will save me!”
» “I will drown, no-one shall save me!”

1 b with

Mood of a in de
its context:

= In handling the Revision History requirement,
the Editing requirement should be treated as
satisfied — not optative but indicative

So indicative and optative sentences should be
kept apart in separate descriptions

.

Three Topics and a Button

4 Facets of the Relationship

The Machine as a model of the World
The interface of shared phenomena

Engineering the World and the Machine

Problem and solution structures

4 Kinds of Denial of the World

4 Principles for Accepting the World

The World and Us (2)

“I accept the universe”
— Margaret Fuller

“By Gad! she’d better!”
— Thomas Carlyle

Abstract data types

* Abstract data types (ADTs) are a common
foundation for software development
— They grew out of Parnas’ notion of information hiding,
which we’ll cover during our design lectures
— Very roughly, an encapsulated type or a class: a set of
procedures (methods) that are the only way to access
and manipulate encapsulated data
* ADTs are commonly specified by
— Natural language comments associated with
— Signatures of the procedures; for example,
- void copyIntBuf (int *pin,int *pout,int len)
50

Algebraic specifications

* Algebraic specifications provide a mathematical
framework for specifying ADTs

» The intent is to provide clear and well-defined
semantics for the operations (procedures), rather
than depending on natural language associated
with precisely defined syntax

» These define the specification of the abstract
operations — defining the equivalence of the
implementation with the abstraction is a separate
activity

Algebras: roughly

* A set of objects
» A set of rules, called axioms, for determining the
equality among those objects
» “K-12” algebra
— Set of objects is the real numbers
— x*(ytz) =x*y + x*z
— Xty=y+x

Algebraic specification for ADT

1. The name of the sort (roughly, the type)
being specified

2. The signatures of the primitive operations

3. The axioms

* There are a number of languages that
support algebraic specification, including
Anna, Clear, Larch, OBJ, ...

Sort

» A sortis a set of values
— roughly a "type" or "class"
— Ex: integers, stacks of integers, strings, complex

numbers, ...

» The sort of interest is the one that is being defined
by a particular specification

* To define this specification may require other
sorts (we’ll see an example)

* This approach induces a hierarchy of sorts

Signatures

» The name of the operator
» The types of its parameters
* The return type

* Like programming language signatures, but
usually represented more abstractly
— push: Stack x Elem -> Stack
— +: Integer x Integer -> Integer
— Round: Real -> Integer

* May look semi-familiar to those who studied ML
in 505

55

Axioms

* Rules that must hold true in any legal
implementation of the sort

Example: queue

+ Signature
- create: -> Queue
- add: Queue x Element -> Queue
- remove: Queue -> Queue
- front: Queue -> Element

+ Axioms
- front (add (create (
— front (add(add (g, x)

b3
y

)) = x
)) = front (add(qg, x))

’
’

- remove (add(create(),x)) = create(
- remove (add (add (g, x),y)) =
add (remove (add (q, %)) ,y)

Conditional axioms

front (add(q,1)) =
if (IsEmpty(qg))then i
else front (q);
* In some cases (not necessarily this one) one

can increase the clarity with conditional
axioms

Operations

+ Usually separated into
— Constructors (that create an instance of the sort)
— Accessors (that take an instance of the sort as a
parameter and return an element from a
supporting sort)
— Modifiers (that take an instance of the sort as a
parameter and return a modified instance of it)

Issues

» Equality: two elements in a sort are equal if and
only if all operations applied to them produce
equal results

— Closely related to the rewriting in the lambda-calculus
— Inequality is defined as the inability to prove equality

+ Consistency?

— Roughly, can we show that the axioms cannot be used
to prove “false”?

» Completeness?

— Roughly, does it represent all the values (e.g., queues)

that we intended? o

10

Another example: signatures

algebra StringSpec;

sorts String, Char, Nat, Bool;

operations
new: () -> String
append: String, String -> String
add: String, Char -> String
length: String -> Nat
isEmpty: String -> Bool
equal: String, String -> Bool

61

StringSpec generated by [new, add]
for all [sl, s2, s3: String; c: Char]

isEmpty (new()) = true;

isEmpty (add(sl,c)) = false;
length
length
append

new()) = 0;

add(sl,c)) = length (sl) + 1

sl, new()) = sl

sl, add(s2,c)) = add
(append(sl,s2), c)

append

equal), new()) = true
), add(sl,c)) = false

sl,c), new()) = false

equal
equal

equal sl,c), add(s2,c)) = equal(sl,s2

62

Pros of algebraic specifications

+ Language independent

+ Implementation independent

* Nicely matched to ADTs

* Strong mathematical foundation

* Suited to automation of the underlying
theorem proving

+ Can “electrify” the specifications by tracing
rewriting

63

Cons of algebraic specifications

+ Difficult to deal with procedures that have
side effects, reference parameters, multiple
returns, etc.

+ Not all interesting behaviors are expressed
via equality

* The limits of notation can lead to messy
and complicated specifications

64

C.A.R. Hoare, 1988

Of course, there is no fool-proof methodology or
magic formula that will ensure a good, efficient, or
even feasible design. For that, the designer needs
experience, insight, flair, judgment, invention.
Formal methods can only stimulate, guide, and
discipline our human inspiration, clarify design
alternatives, assist in exploring their consequences,
formalize and communicate design decisions, and
help to ensure that they are correctly carried out.

65

Model-oriented specifications

* Model a system by describing its state
together with operations over that state
— An operation is a function that maps a value of
the state together with values of parameters to
the operation onto a new state value
+ A model oriented language typically
describes mathematical objects (e.g. data
structures or functions) that are structurally
similar to the required computer software

66

11

Z (“Zed”)

Probably the most widely known and used model-
based specification language

* Good for describing state-based abstract
descriptions roughly in the abstract data type style

Based on typed set theory and predicate logic

» A few commercial successes
— I’ll come back to one reengineering story afterwards

67

The basic idea

* Static schemas

— States a system can occupy

— Invariants that must be maintained in every system state
* Dynamic schemas

— Operations that are permitted

— Relationship between inputs and outputs of those
operations

— Changes from state to state

68

[lustrative example (Zeil)

I’1l sketch out a standard Z-style example

Z relies heavily on non-standard characters
and formatting, which I will only
approximate

— The reading includes a similar example

— And uses the Z notation

69

Phone directory: static schema

* A static schema has three parts

— A name

— A set of declarations that define the state

— A set of invariants that constrain all legal states
* PhoneDB

—members: P Person
telephones: Person <-> Phone

—dom telephones SUBSET-OF members

70

Type of

members: P Person

¢ Atomic elements, like Person and Phone,
represent sets of values

+ P Person represents the power set of
Person, the set of all sets taken from
Person

* So, members is one of those: a set of
Person

71

Type of

telephones: Person <-> Phone

» telephones is a relation between Person
and Phone
» That s, it is a set of pairs, where the first element

is taken from Person and the second is taken
from Phone

72

12

Invariant

dom telephones subset-of members

This is an invariant that defines a constraint on all
legal states of PhoneDB

The domain (the set of first elements in the pairs)
of telephones must only contain elements that
are in members

Without this invariant, there would be no
restrictions nor relationship between members and
telephones

When we define operations that can modify the
state of PhoneDB, they are obligated to maintain

(prove) that this invariant is maintained N

Example: a legal pPhoneDB state

* Person: { hank, hellmut, bob, paul, jean-loup,
ed, david}
« Phone: { 5-3798,3-2121,3-5010,3-4755,5-1376,
3-1695,3-2969,3-6175,6-4368}
* members: { hank, hellmut, Jjean-loup, ed,
david }

* telephones: { (hank |->3-6175),
(hellmut |-> 3-6175),
(jean-loup |-> 5-1376),
(ed |-> 3-4755),
(david |-> 5-3798) }

- |-> isa “maplet”, essentially a pair

74

A few notes on the example

The elements of Person and Phone are atomic: they have
no required syntax nor semantics

telephones is a relation, not a function; so adding the
tuple (david |-> 3-1695) to it is perfectly legal

And it already contains two tuples with the same range
(second element of the pair): hank and hellmut share 3-
6175

Z, of course, has and uses functions (both partial and total)

— But they are notational conveniences, since one can write
invariant that constrain relations to be functions

75

Example: an illegal PhoneDB state

* Person: { hank, hellmut, bob, paul, jean-loup,
ed, david, jonathan }
¢ Phone: { 5-3798,3-2121,3-5010,3-4755,5-1376,

3-1695,3-2969,3-6175,6-4368,1-2345}
+ members: { hank, hellmut, jean-loup, ed,
david }
telephones: { (hank |->3-6175),
(hellmut |-> 3-1675),
(jean-loup |-> 5-1376),
(ed |-> 3-4755),
(david |-> 5-3798),
(jonathan |-> 1-2345) }

 This would be perfectly legal in the absence of the
invariant: but jonathan, while being an element of
Person, is not an element of members

76

Dynamic schema: specifying
state transitions

Static schema specify legal states

But we also need to specify operations that
transform one legal state into another legal state
Dynamic schema have (just like static schemas)
— A name

— A set of declarations

— A set of invariants that relate the set of declarations to
one another

However, the declarations used are richer

77

Example declaration

+ Declaration: DELTA PhoneDB
* A pELTA declaration introduces pre- and post-states for
each of the declarations in the named schema
- members and members’
- telephones and telephones’
* The unprimed names represent the pre-states and the
primed names the post-state
* Any invariants must hold on the pre-state and then again
on the post-state

— dom telephones SUBSET-OF members
- dom telephones’ SUBSET-OF members’

78

13

Example dynamic schema

¢ Name: rddEntry

+ Declarations:
- DELTA PhoneDB
name? : Person
newnumber?: Phone
* Invariants
- name? IS-ELEM members

(name? |-> newnumber?) NOT-ELEM telephones
telephones’ =

telephones UNION (name? |-> newnumber?)
members’ = members

» This may or may not be what you expect from Addentry,
but it is clear about key issues: for instance, it only adds

new phone numbers for existing members
79

What if...

*+ telephones’ =
telephones UNION (name? |-> newnumber?)

was replaced with
¢+ (name? |-> newnumber?)IS-ELEM telephones’

80

Returning information

GetNumber

¢+ XI PhoneDB
name?: Person
number!: P Phone

name? IS-ELEM members
number! = { n : Phone

| ((name? |-> n) IS-ELEM telephones)}
« The XI declaration is the equivalent of DELTA along with the
following invariants that guarantee no change to the PhoneDB
declarations
- members = members’

- telephones = telephones’

81

Error conditions

* Note that the dynamic schema we’ve seen
so far just specify what happens in the
“good cases”

— Nothing is specified for the error conditions
— What happens with addentry (mork, 0-1010) ?

82

Specify in separate schema

e NotMember

¢ XI PhoneDB
name? : Person
report! : Report

e name? NOT-ELEM members
report! = ‘not a member’

83

But it’s still entirely separate

* Success
*« report! : Report
e report! = ‘OK’

* And then the coolest thing in Z...(at least notationally) is
the schema calculus
AddEntryWithError ==
(AddEntry AND Success) OR

NotMember

* This is the same as a dynamic schema in which the three
schema are commingled according to the stated logic
— They are “pinned” together by shared names

84

14

Z/CICS

» Z was used to help develop the next release of
IBM’s CICS/ESA_V3.1, a transaction processing
system

— Integrated into IBM's existing and well-established
development process

— Many measurements of the process indicated that they
were able to reduce their costs for the development by
almost five and a half million dollars

— Early results from customers also indicated
significantly fewer problems, and those that have been
detected are less severe than would be expected

otherwise
85

1992 Queen’s Award
for Technological Achievement

“Her Majesty the Queen has been graciously pleased to approve the Prime
Minister's recommendation that The Queen's Award for Technological
Achievement should be conferred this year upon Oxford University
Computing Laboratory.

“Oxford University Computing Laboratory gains the Award jointly with IBM
United Kingdom Laboratories Limited for the development of a programming
method based on elementary set theory and logic known as the Z notation, and
its application in the IBM Customer Information Control System (CICS)
product. ...

“The use of Z reduced development costs significantly and improved
reliability and quality. Precision is achieved by basing the notation on
mathematics, abstraction through data refinement, re-use through modularity
and accuracy through the techniques of proof and derivation.

“CICS is used worldwide by banks, insurance companies, finance houses and
airlines etc. who rely on the integrity of the system for their day-to-day
business.”

86

Pros and cons?

¢ Your turn...

87

15

