
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Computer Science & Engineering
Spring 2006

2

A Michael Jackson presentation

• The following slides are from his keynote
at ICSE 1995

3 4

5 6

2

7 8

9 10

11 12

3

13 14

15 16

17 18

4

19 20

21 22

23 24

5

25 26

27 28

29 30

6

31 32

33 34

35 36

7

37 38

39 40

41 42

8

43 44

45 46

47 48

9

49 50

Abstract data types

• Abstract data types (ADTs) are a common
foundation for software development
– They grew out of Parnas’ notion of information hiding,

which we’ll cover during our design lectures
– Very roughly, an encapsulated type or a class: a set of

procedures (methods) that are the only way to access
and manipulate encapsulated data

• ADTs are commonly specified by
– Natural language comments associated with
– Signatures of the procedures; for example,
– void copyIntBuf(int *pin,int *pout,int len)

51

Algebraic specifications

• Algebraic specifications provide a mathematical
framework for specifying ADTs

• The intent is to provide clear and well-defined
semantics for the operations (procedures), rather
than depending on natural language associated
with precisely defined syntax

• These define the specification of the abstract
operations – defining the equivalence of the
implementation with the abstraction is a separate
activity

52

Algebras: roughly

• A set of objects
• A set of rules, called axioms, for determining the

equality among those objects
• “K-12” algebra

– Set of objects is the real numbers
– x*(y+z) = x*y + x*z
– x+y=y+x
– …

53

Algebraic specification for ADT

1. The name of the sort (roughly, the type)
being specified

2. The signatures of the primitive operations
3. The axioms

• There are a number of languages that
support algebraic specification, including
Anna, Clear, Larch, OBJ, …

54

Sort

• A sort is a set of values
– roughly a "type" or "class"
– Ex: integers, stacks of integers, strings, complex

numbers, …
• The sort of interest is the one that is being defined

by a particular specification
• To define this specification may require other

sorts (we’ll see an example)
• This approach induces a hierarchy of sorts

10

55

Signatures

• The name of the operator
• The types of its parameters
• The return type

• Like programming language signatures, but
usually represented more abstractly
– push: Stack x Elem -> Stack
– +: Integer x Integer -> Integer
– Round: Real -> Integer

• May look semi-familiar to those who studied ML
in 505 56

Axioms

• Rules that must hold true in any legal
implementation of the sort

57

Example: queue

• Signature
– create: -> Queue
– add: Queue x Element -> Queue
– remove: Queue -> Queue
– front: Queue -> Element

• Axioms
– front(add(create(),x)) = x
– front(add(add(q,x),y)) = front(add(q,x))
– remove(add(create(),x)) = create()
– remove(add(add(q,x),y)) =
 add(remove(add(q,x)),y)

58

Conditional axioms

front(add(q,i)) =
 if (IsEmpty(q))then i
 else front(q);

• In some cases (not necessarily this one) one
 can increase the clarity with conditional
 axioms

59

Operations

• Usually separated into
– Constructors (that create an instance of the sort)
– Accessors (that take an instance of the sort as a

parameter and return an element from a
supporting sort)

– Modifiers (that take an instance of the sort as a
parameter and return a modified instance of it)

60

Issues

• Equality: two elements in a sort are equal if and
only if all operations applied to them produce
equal results
– Closely related to the rewriting in the lambda-calculus
– Inequality is defined as the inability to prove equality

• Consistency?
– Roughly, can we show that the axioms cannot be used

to prove “false”?
• Completeness?

– Roughly, does it represent all the values (e.g., queues)
that we intended?

11

61

Another example: signatures
algebra StringSpec;
sorts String, Char, Nat, Bool;
operations
 new: () -> String
 append: String, String -> String
 add: String, Char -> String
 length: String -> Nat
 isEmpty: String -> Bool
 equal: String, String -> Bool

62

StringSpec generated by [new, add]

for all [s1, s2, s3: String; c: Char]

isEmpty (new()) = true;

isEmpty (add(s1,c)) = false;

length (new()) = 0;

length (add(s1,c)) = length (s1) + 1

append (s1, new()) = s1

append (s1, add(s2,c)) = add
 (append(s1,s2), c)

equal (new(), new()) = true

equal (new(), add(s1,c)) = false

equal (add(s1,c), new()) = false

equal (add(s1,c), add(s2,c)) = equal(s1,s2)

63

Pros of algebraic specifications

• Language independent
• Implementation independent
• Nicely matched to ADTs
• Strong mathematical foundation
• Suited to automation of the underlying

theorem proving
• Can “electrify” the specifications by tracing

rewriting
64

Cons of algebraic specifications

• Difficult to deal with procedures that have
side effects, reference parameters, multiple
returns, etc.

• Not all interesting behaviors are expressed
via equality

• The limits of notation can lead to messy
and complicated specifications

65

C.A.R. Hoare, 1988

Of course, there is no fool-proof methodology or
magic formula that will ensure a good, efficient, or
even feasible design. For that, the designer needs
experience, insight, flair, judgment, invention.
Formal methods can only stimulate, guide, and
discipline our human inspiration, clarify design
alternatives, assist in exploring their consequences,
formalize and communicate design decisions, and
help to ensure that they are correctly carried out.

66

Model-oriented specifications

• Model a system by describing its state
together with operations over that state
– An operation is a function that maps a value of

the state together with values of parameters to
the operation onto a new state value

• A model oriented language typically
describes mathematical objects (e.g. data
structures or functions) that are structurally
similar to the required computer software

12

67

Z (“zed”)

• Probably the most widely known and used model-
based specification language

• Good for describing state-based abstract
descriptions roughly in the abstract data type style

• Based on typed set theory and predicate logic
• A few commercial successes

– I’ll come back to one reengineering story afterwards

68

The basic idea

• Static schemas
– States a system can occupy
– Invariants that must be maintained in every system state

• Dynamic schemas
– Operations that are permitted
– Relationship between inputs and outputs of those

operations
– Changes from state to state

69

Illustrative example (Zeil)

• I’ll sketch out a standard Z-style example
• Z relies heavily on non-standard characters

and formatting, which I will only
approximate
– The reading includes a similar example
– And uses the Z notation

70

Phone directory: static schema

• A static schema has three parts
– A name
– A set of declarations that define the state
– A set of invariants that constrain all legal states

• PhoneDB
– members: P Person
telephones: Person <-> Phone

– dom telephones SUBSET-OF members

71

Type of
members: P Person

• Atomic elements, like Person and Phone,
represent sets of values

• P Person represents the power set of
Person, the set of all sets taken from
Person

• So, members is one of those: a set of
Person

72

Type of
telephones: Person <-> Phone

• telephones is a relation between Person
and Phone

• That is, it is a set of pairs, where the first element
is taken from Person and the second is taken
from Phone

13

73

Invariant
 dom telephones subset-of members

• This is an invariant that defines a constraint on all
legal states of PhoneDB

• The domain (the set of first elements in the pairs)
of telephones must only contain elements that
are in members

• Without this invariant, there would be no
restrictions nor relationship between members and
telephones

• When we define operations that can modify the
state of PhoneDB, they are obligated to maintain
(prove) that this invariant is maintained 74

Example: a legal PhoneDB state
• Person: { hank, hellmut, bob, paul, jean-loup,

ed, david}

• Phone: { 5-3798,3-2121,3-5010,3-4755,5-1376,
3-1695,3-2969,3-6175,6-4368}

• members: { hank, hellmut, jean-loup, ed,
 david }

• telephones: { (hank |->3-6175),
(hellmut |-> 3-6175),

 (jean-loup |-> 5-1376),
(ed |-> 3-4755),
(david |-> 5-3798) }

• |-> is a “maplet”, essentially a pair

75

A few notes on the example
• The elements of Person and Phone are atomic: they have

no required syntax nor semantics
• telephones is a relation, not a function; so adding the

tuple (david |-> 3-1695) to it is perfectly legal
• And it already contains two tuples with the same range

(second element of the pair): hank and hellmut share 3-
6175

• Z, of course, has and uses functions (both partial and total)
– But they are notational conveniences, since one can write

invariant that constrain relations to be functions

76

Example: an illegal PhoneDB state
• Person: { hank, hellmut, bob, paul, jean-loup,

ed, david, jonathan }

• Phone: { 5-3798,3-2121,3-5010,3-4755,5-1376,
3-1695,3-2969,3-6175,6-4368,1-2345}

• members: { hank, hellmut, jean-loup, ed,
 david }

• telephones: { (hank |->3-6175),
(hellmut |-> 3-1675),

 (jean-loup |-> 5-1376),
(ed |-> 3-4755),
(david |-> 5-3798),
(jonathan |-> 1-2345) }

• This would be perfectly legal in the absence of the
invariant: but jonathan, while being an element of
Person, is not an element of members

77

Dynamic schema: specifying
state transitions

• Static schema specify legal states
• But we also need to specify operations that

transform one legal state into another legal state
• Dynamic schema have (just like static schemas)

– A name
– A set of declarations
– A set of invariants that relate the set of declarations to

one another
• However, the declarations used are richer

78

Example declaration
• Declaration: DELTA PhoneDB
• A DELTA declaration introduces pre- and post-states for

each of the declarations in the named schema
– members and members’
– telephones and telephones’

• The unprimed names represent the pre-states and the
primed names the post-state

• Any invariants must hold on the pre-state and then again
on the post-state
– dom telephones SUBSET-OF members
– dom telephones’ SUBSET-OF members’

14

79

Example dynamic schema
• Name: AddEntry
• Declarations:

– DELTA PhoneDB
name? : Person
newnumber?: Phone

• Invariants
– name? IS-ELEM members

(name? |-> newnumber?) NOT-ELEM telephones
telephones’ =

telephones UNION (name? |-> newnumber?)
members’ = members

• This may or may not be what you expect from AddEntry,
but it is clear about key issues: for instance, it only adds
new phone numbers for existing members

80

What if…
• telephones’ =

telephones UNION (name? |-> newnumber?)

was replaced with
• (name? |-> newnumber?)IS-ELEM telephones’

81

Returning information
• GetNumber

• XI PhoneDB
name?: Person
number!: P Phone

• name? IS-ELEM members
number! = { n : Phone

| ((name? |-> n) IS-ELEM telephones)}

• The XI declaration is the equivalent of DELTA along with the
following invariants that guarantee no change to the PhoneDB
declarations
– members = members’

– telephones = telephones’

82

Error conditions

• Note that the dynamic schema we’ve seen
so far just specify what happens in the
“good cases”
– Nothing is specified for the error conditions
– What happens with AddEntry(mork,0-1010)?

83

Specify in separate schema

• NotMember

• XI PhoneDB
name? : Person
report! : Report

• name? NOT-ELEM members
report! = ‘not a member’

84

But it’s still entirely separate
• Success
• report! : Report
• report! = ‘OK’

• And then the coolest thing in Z…(at least notationally) is
the schema calculus

• AddEntryWithError ==
(AddEntry AND Success) OR
 NotMember

• This is the same as a dynamic schema in which the three
schema are commingled according to the stated logic
– They are “pinned” together by shared names

15

85

Z/CICS

• Z was used to help develop the next release of
IBM’s CICS/ESA_V3.1, a transaction processing
system
– Integrated into IBM's existing and well-established

development process
– Many measurements of the process indicated that they

were able to reduce their costs for the development by
almost five and a half million dollars

– Early results from customers also indicated
significantly fewer problems, and those that have been
detected are less severe than would be expected
otherwise

86

1992 Queen’s Award
for Technological Achievement

• “Her Majesty the Queen has been graciously pleased to approve the Prime
Minister's recommendation that The Queen's Award for Technological
Achievement should be conferred this year upon Oxford University
Computing Laboratory.

• “Oxford University Computing Laboratory gains the Award jointly with IBM
United Kingdom Laboratories Limited for the development of a programming
method based on elementary set theory and logic known as the Z notation, and
its application in the IBM Customer Information Control System (CICS)
product. ...

• “The use of Z reduced development costs significantly and improved
reliability and quality. Precision is achieved by basing the notation on
mathematics, abstraction through data refinement, re-use through modularity
and accuracy through the techniques of proof and derivation.

• “CICS is used worldwide by banks, insurance companies, finance houses and
airlines etc. who rely on the integrity of the system for their day-to-day
business.”

87

Pros and cons?

• Your turn…

