
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Department of Computer Science & Engineering
Spring 2006

2

Finite-State Specifications

• There is a large class of specification languages
based on finite state machines

• Often primarily for describing the control aspects
of reactive systems

• The theoretical basis is very firm
– Lots of theory on finite-state machines, plus analysis

support from theorem proving and model checking
– As we’ll see briefly, modeling checking is increasingly

feasible for analyzing this kind of specification

3

Reactive systems
• Essentially event-driven systems that responds to both

external (from the environment) and internally-generated
stimuli, and also provides stimuli to the external
environment

• These are generally embedded systems in which we care
about the behavior of the overall system, not the software
per se

• As fewer and fewer complex systems are built without
software — one can legitimately view this as
inappropriate and, in some cases, perhaps even unethical
— the pressures on properly specifying (and analyzing)
reactive systems increases

4

Many, many models
• Standard finite state machines

– Set of states
– One initial state
– Zero or more termination states
– Finite alphabet
– Transition relation

• Petri nets
• Communicating finite state machines
• Statecharts
• RSML
• …

5

A common problem

• It is often the case that conventional finite state
machines blow-up in size for big problems

• This is especially true for deterministic machines
– And these are usually preferable to non-deterministic

ones, because they don’t allow implementers to make
decisions about the behavior of the specified system

• And for machines capturing concurrency (because
of the potential interleavings that must be
captured)

6

State explosion
• The state explosion problem is very similar to the

potential blow-up that arises when transforming a non-
deterministic finite-state machine to a deterministic one

• There is a potential exponential blowup: an N-state
machine can become an 2N-state machine

• As a high-level example think
– of a state machine that tracks the amount of money put into a

vending machine and
– of a state machine that tracks the buttons pushed on the vending

machine to indicate which product to purchase
– if money can be entered and buttons can be pushed in an

interleaved fashion, consider the fully expanded single state
machine that composes these two sub-machines

2

7

Statecharts (Harel)

• A visual formalism for defining finite state
machines

• A hierarchical mechanism allows for complex
machines to be defined by smaller descriptions
– Parallel states (AND decomposition)
– Conventional OR decomposition

• The reduced size of the description is a central
piece of the leverage of statecharts

8

Walkman
example:
statechart

9

Communicating state machines

• In conventional state machines, precisely one
state must be occupied at a given time

• In communicating state machines (including
statecharts), every machine in a composition must
occupy one state at a given time
– This allows (in part) the blow-up of representation to

be mitigated, because now a pair of communicating
state machines can represent NxM states in the overall
machine using N+M states

10

Hierarchical state machines

• Harel’s additional insight was to allow the
hierarchical definition of state machines
– It’s basically an and-or tree of state machines
– Machines separated by dotted lines are “and”

machines, where each of the machines occupies
exactly one state at a time; it’s easy to imagine taking
the cross product to create a flattened machine

– Everything else is an “or” machine, essentially like a
standard state machine (although they can in turn be
nested “and” machines)

11

Tons of details

• As you noted in the paper, there are many details
• What are the start states upon entering an “and”

machine?
– These notations usually have an arrow with nothing at

the tail pointing at the start states.
• What happens upon exits from a nested state?

– Nested states are allowed to cause exits from the
enclosing “and” machines (usually by showing a
transition to the edge of the enclosed box)

• And more, more, more!
12

An RSML example
• The following slide shows a very rough “statechart” from RSML

– RSML is a variant of statecharts developed specifically for the
specification of TCAS (Traffic Collision Avoidance System)

– I will call all descriptions in these similar languages “statecharts”
• Three high-level states: on, off, and panic
• The on state is expanded and has three parallel states: temperature, rod

movement, and rod configuration
• The only non-traditional statecharts feature in this description is the

temperature state, which uses a bus that connects all substates (too
hot, hot, okay, cold) to one another

• There are six events listed at the bottom (this is an incomplete list)
– Each event has a name, a description of how it is generated (externally or

by a specific sub-machine in the description), and a list of the sub-
machines that react to that event

3

Too Hot

Move OutJust Moved

Move InReady

Cold

Okay

Hot

All Out

All In

Midway

Temperature Rod ConfigurationRod Movement

On

Off Panic

Temp_Reading External Temperature
Initiate_Move Rod_Move Rod_Config
Move_Finished External Rod_Config
Rod_Updated Rod_Config Rod_Move
Clock_Event External Rod_Move
Temp_Update Temperature Rod_Move

Events

14

Sample transitions
On Panic

Trigger_Event: Temp_Update
Condition: Temperature in Too Hot
Output Action: Panic_Event

Ready Move In

Trigger_Event: Temp_Update
Condition: Rod_Movement in Ready and Temperature in Hot
Output Action: Initiate_Move

Just Moved Ready

Trigger_Event: Clock_Event
Condition: Rod_Movement in Just_Moved and
 t > t(entered(Just_Moved))+ Move_Delay

• This slide shows three sample
transitions

• Conditions on the transitions are
common

• Output actions are also listed here

15

Events
• External—interactions with environment
• Synchrony hypothesis (from Esterel)

– External event arrives
– Triggers cascade of internal events (micro

steps)
– Stability reached before next external event

• RSML requires the synchrony hypothesis
• Statecharts gives a choice

16

Synchrony hypothesis

• Accept a single external event and then propagate
all internal events until the machine stabilizes,
and then accept another external event, etc.

• One model of this is to think of the machine as
executing infinitely fast

• The alternative is to allow external and internal
events to interleave

• The latter alternative appears to be used in
hardware specifications more frequently, and the
former in software specifications (so we will
consider the synchrony hypothesis as a rule)

17

Semantics
• What to do when there are multiple events available:

which of the enabled transitions should be taken?
• There are literally dozens of (published) choices, with

subtle distinctions
• Some of the more theoretically pleasing semantics seem,

unfortunately, to be less intuitive to people
• It is, however, critical to have a well-defined semantics;

after all, these are specification languages
– The most common semantics are the “Statemate semantics”, Harel

and Naamad, which define the formal semantics of statecharts in
terms of the operational semantics defined by the Statemate tool

• At the same time, for most “normal” examples, the
differences among the semantics are not significant 18

Reasoning

• The definition of precise semantics allows
reasoning of the meaning of statecharts

• Given an initial state
– And a set of possible external events
– What states can be reached?

• Again, not that different from program
correctness, model-based specifications, or
algebraic specifications: reason inductively

4

19

Differences

• But state-based specifications are fundamentally
different from model-based and algebraic-
specifications

• More importantly, a central focus on specifying
control (as opposed to state, or pseudo-state as in
algebraic specifications)

• The computations represented at specific nodes
(states) in statecharts are generally not part of the
basic specification and reasoning
– But they are, of course, important
– And they are addressed by some notations and tools 20

Question

• So we have a big statecharts-like specification
• How do we know it has properties we want it to

have?
– Ex: is it deterministic?
– Ex: can you ever have the doors unlock by themselves

while the car is moving?
– Ex: can you ever cause an emergency descent when

you are under 500 feet above ground level?

21

Standard answers include

• Human inspection
• Simulation
• Analysis

• Aside: especially for safety-critical
systems, I cannot imagine using only a
single approach

22

An alternative: model checking
• Evaluate temporal properties of

finite state systems
– Guarantee a property is true or

return a counterexample
– Ex: Is it true that we can never

enter an error state?
– Ex: Are we able to handle a reset

from any state?
• Extremely successfully for

hardware verification
– Intel got into the game after the

FDIV error
• Open question: applicable to

software specifications?

Finite State

Machine

Temporal Logic

Formula

Model

Checker

Yes No

23

State Transition Graph

• One way to represent a finite state machine is as a
state transition graph
– S is a finite set of states
– R is a binary relation that defines the possible

transitions between states in S
– P is a function that assigns atomic propositions to each

state in S
• e.g., that a specific process holds a lock

• Other representations include regular expressions,
etc.

24

Example

• Three states
• Transitions as shown
• Atomic properties a, b

and c

• Given a start state
(say, S0), you can
consider legal paths
through the state
machine

a

b

b

c

a

c

S0

S1

S2

5

25

A computation tree
• From a given start state,

you can represent all
possible paths with an
infinite computation tree

• Model checking allows us
to answer questions about
this tree structure

• Because the underlying
machine is finite-state, the
structure of the
computation tree is
constrained

S0

S0

S1

S2S1

S0

S2S1

26

Temporal formulae:
we can say things like

• Does some property hold true
globally (e.g., in every state)?

– Top figure
• Does some property inevitably

hold true (e.g., along every
path)?

– Bottom figure
• Does some property potentially

hold true?

S0

S0

S1

S2S1

S0

S2S1

S0

S0

S1

S2S1

S0

S2S1

S2

27

Mutual exclusion example

• N1 and N2, non-critical
regions of Process 1 and 2

• T1 and T2, trying regions
• C1 and C2, critical regions
• AF(C1) in lightly shaded

state?
– C1 always inevitably true?

• EF(C1 AND C2) in dark
shaded state?
– C1 and C2 eventually true?

N1/N2

N1/T2T1/N2

C1/N2 T1/T2 T1/T2 N1/C2

T1/C2C1/T2

28

How does model checking
work? (in brief!)

• An iterative algorithm that labels states in the
transition graph with formulae known to be true

• For a query Q
– the first iteration marks all subformulae of Q of length

1
– the second iteration marks them of length 2
– this terminates since the formula is finite

• The details of the logic indeed matter
– But not at this level of description

29

Example

• Q == T1 implies AF C1
– If Process 1 is trying to acquire the mutex, then

it is inevitably true it will get it sometime
• Q == (not T) OR AF C1

– Rewriting with DeMorgan’s Laws
• First, label all the states where T1, not T1,

and C1 are true
– These are atomic properties

30

Example
• Next mark all the states in

which AF C1 is true, etc.
– The algorithm tracks states

visited using depth-first
search

– Slight variations for AF,
AG, EF, EG, etc.

• At termination,
(not T1) OR AF C1 is
true everywhere

– Hence the temporal property
is true for the state machine

N1/N2
¬T1

¬T1 v AF C1

N1/T2
¬T1

¬T1 v AF C1

T1/N2
AF C1

¬T1 v AF C1

C1/N2
¬T1

AF C1

¬T1 v AF C1

N1/C2
¬T1

¬T1 v AF C1

T1/C2
AF C1

¬T1 v AF C1

T1/T2
AF C1

¬T1 v AF C1

C1/T2
¬T1

AF C1

¬T1 v AF C1

T1/T2
AF C1

¬T1 v AF C1

6

31

Symbolic model checking

• State space can be huge (>21000) for many systems
• Key idea: use implicit representation of state space

– Data structure to represent transition relation as a
boolean formula

• Algorithmically manipulate the data structure to
explore the state space

• Key: efficiency of the data structure

32

Binary decision diagrams (BDDs)

• “Folded decision tree”
• Fixed variable order
• Many functions have small

BDDs
– Multiplication is a notable

exception

• Can represent
– State machines (transition

functions) and
– Temporal queries

01

1 1

1 10

10

1 1

0

0

x
1

x
4

x
3

x
2

Odd Parity

Due to Randy Bryant

33

BDD-based model checking

• Iterative, fixed-point algorithms that are quite
similar to those in explicit model checking

• Applying boolean functions to BDDs is efficient,
which makes the underlying algorithms efficient
– AND becomes set intersection, OR becomes set union,

etc.
• When the BDDs remain small, that is

– The ordering of the variables is a key issue

34

BDD-based successes in HW

• IEEE Futurebus+ cache coherence protocol
• Control protocol for Philips stereo

components
• ISDN User Part Protocol
• ...

35

Software model checking

• Finite state software specifications
– Reactive systems (avionics, automotive, etc.)
– Hierarchical state machine specifications

• Not intended to help with proving
consistency of specification and
implementation
– Rather, checking properties of the specification

itself
36

Why might it fail?
• Software is often specified with infinite

state descriptions
• Software specifications may be structured

differently from hardware specifications
– Hierarchy
– Representations and algorithms for model

checking may not scale

7

37

Our approach at UW—try it!
• Applied model checking to the specification of TCAS II

– Traffic Alert and Collision Avoidance System
• In use on U.S. commercial aircraft
• http://www.faa.gov/and/and600/and620/newtcas.htm

– FAA adopted specification
– Initial design and development by Leveson et al.

• Later applied it to a statecharts description of an electrical
power distribution system model of the B777

• The vast bulk of this work was due to William Chan
– Along with Mike Ernst won honorable mention in the 2000 ACM

Dissertation Award competition
– Died in a tragic automobile accident a week after defending his

dissertation
38

TCAS
• Warn pilots of traffic

– Plane to plane, not through ground controller
– On essentially all commercial aircraft

• Issue resolution advisories only
– Vertical resolution only
– Relies on transponder data

39

TCAS specification

• Irvine Safety Group (Leveson et al.)
– Specified in RSML as a research project
– FAA adopted RSML version as official

• Specification is about 400 pages long
• This study uses: Version 6.00, March 1993

– Not the current FAA version

40

TCAS—high-level structure

Own_Aircraft Other_Aircraft

On

•Own_Aircraft
–Sensitivity levels, Alt_Layer, Advisory_Status

•Other_Aircraft
–Tracked, Intruder_State, Range_Test, Crossing, Sense
Descend/Climb

41

Using SMV

•SMV is a BDD-based model checker
•It checks CTL formulas

–A specific temporal logic
•We developed reasonably efficient
techniques for mapping RSML to SMV,
including the state hierarchies

42

Iterative process
• Iterate SMV version of specification
• Clarify and refine temporal formula
• Model environment more precisely
• Refine specification

8

43

Use of non-determinism:
needed to reduce size of the BDDs

• Inputs from environment
– Altitude := {1000…8000}

• Simplification of functions
– Alt_Rate :=

0.25*(Alt_Baro-ZP)/Delta_t
– Alt_Rate := {-2000…2000}

• Unmodelled parts of specification
– States of Other_Aircraft treated as non-

deterministic input variables

44

Checking properties

• Initial attempts to check any property
generated BDDs of over 200MB

• First successful check took 13 hours
– Was reduced to a few minutes

• Techniques included
– Partitioned BDDs
– Reordered variables
– Implemented better search for counterexamples

45

Property checking

• Domain independent properties
– Deterministic state transitions
– Function consistency

• Domain dependent
– Output agreement
– Safety properties

• We used SMV to investigate some of these
properties on TCAS’ Own_Aircraft module

46

Deterministic transitions
• Do the same conditions allow for non-

deterministic transitions?
• Inconsistencies were found earlier (in an earlier

version of TCAS) by other methods [Heimdahl and
Leveson]
– Identical conditions allowed transitions from

Sensitivity Level 4 to SL 2 or to SL 5
• Our formulae checked for all possible non-

determinism; we found this case, too

47

V_254a := MS = TA_RA | MS = TA_only | MS =3 | MS = 4 |
 MS = 5 | MS = 6 | MS = 7;
V_254b := ASL = 2 | ASL = 3 | ASL = 4 | ASL = 5 |
 ASL = 6 | ASL = 7;
T_254 := (ASL = 2 & V_254a) | (ASL = 2 & MS = TA_only) |
 (V_254b & LG = 2 & V524a);
V_257a := LG = 5 | LG = 6 | LG = 7 | LG = none;
V_257b := MS = TA_RA | MS = 5 || MS = 6 | MS = 7;
V_257c := MS = TA_RA | MS = TA_only | MS = 3 | MS = 4 |
 MS = 5 | MS = 6 | MS = 7;
V_257d := ASL = 5 | ASL = 6 | ASL = 7;
T_257 := (ASL = 5 | V_257a | V_257b) |
 (ASL = 5 & MS = TA_only) |
 (ASL = 5& LG = 2 & V_257c) |
 (V_257d & LG = 5 & V_257b) |
 (V_257d & V_257a & MS = 5);

48

Function consistency
•Many functions are defined in terms of cases

–If C1 is true then F returns V1
–If C2 is true then F returns V2
–If C3 is true then F returns V3

•A function is inconsistent if two different
conditions Ci and Cj can be true simultaneously

•So, check the formula (for three cases)
–AG NOT

((C1 AND C2) OR (C1 AND C3) OR (C2 AND C3))

9

49 50

Display_Model_Goal

• Tells pilot desired rate of altitude change
• Checking for consistency gave a counterexample

– Other_Aircraft reverse from an Increase-
Climb to an Increase-Descend advisory

– After study, this is only permitted in our non-
deterministic modeling of Other_Aircraft

– Modeling a piece of Other_Aircraft’s logic
precludes this counterexample

51

Output agreement
• Related outputs should be consistent

– Resolution advisory
•Increase-Climb, Climb, Descend,
Increase-Descend

– Display_Model_Goal
• Desired rate of altitude change
• Between -3000 ft/min and 3000 ft/min

– Presumably, on a climb advisory,
Display_Model_Goal should be positive

52

Output agreement check
• AG ((RA = Climb) implies (DMG > 0))

– If Resolution Advisory is Climb, then
Display_Model_Goal is positive

• Counterexample was found
– t0 : RA = Descend, DMG = -1500

– t1 : RA = Increase-Descend, DMG = -2500

– t2 : RA = Climb, DMG = -1500

53

Limitations

• Can’t model all of TCAS
– Pushing limits of SMV (more than 200 bit

variables is problematic)
– Need some non-linear arithmetic to model

parts of Other_Aircraft
• New result that represents constraints as BDD

variables and uses a constraint solver

• How to pick appropriate formulae to check?

54

Whence formulae?
•“There have been two pilot reports
received which indicated that TCAS had
issued Descend RA's at approximately 500
feet AGL even though TCAS is designed
to inhibit Descent RAs at 1,000 feet AGL.
All available data from these encounters
are being reviewed to determine the reason
for these RAs.” –TCAS web

10

55

Whence formulae?

• Jaffe, Leveson et al. developed criteria that
specifications of embedded real-time systems
should satisfy, including:
– All information from sensors should be used
– Behavior before startup, after shutdown and during off-

line processing should be specified
– Every state must have a transition defined for every

possible input (including timeouts)
• Predicates on the transitions must yield deterministic behavior

• Essentially a check-list, but a very useful one

56

What about infinite state?
• Model checking does not apply to infinite state

specifications
– The iterative algorithm will not reach a fixpoint

• Theorem proving applies well to infinite state
specifications, but has generally proved to be
unsatisfactory in practice

• One approach is to abstract infinite state specifications
into finite state ones
– Doing this while preserving properties is hard

• D. Jackson et al.’s Nitpick approach
– Find counterexamples (errors), but don’t “prove” anything

57

Model checking wrap up
• The goal of model checking is to allow finite state

descriptions to be analyzed and shown to have particular
desirable properties
– Won’t help when you don’t want or need finite state descriptions
– Definitely added value when you do, but it’s not turnkey yet

• There’s still a real art in managing model checking
– Definitely feasible on modest sized systems

• This was fast: my goal wasn’t to make you into model
checking experts
– But it might titillate one or two of you to learn more

• But rather to understand the sketches of what model
checking is and why it is so promising for checking some
classes of specifications

