
Applications of predicate abstraction to software
analysis

Wilmot Li (wilmotli@cs)

February 25, 2002

1 Introduction

Given the increasingly significant roles of software systems in the world today, the
need for reliable, automatic verification techniques continues to grow. Unfortu-
nately, concrete systems (i.e. specifications or actual programs) generally posess
characteristics that are problematic for many types of analysis, making program
verification a particularly difficult task. For example, many concrete systems can-
not be model checked to find or verify invariants because they correspond to in-
finite state machines. As a consequence, one of the main challenges in this area
of research is coming up with expressive models for software that are amenable to
analysis.

Program abstraction is one common approach to this problem. By converting a
complicated concrete system into a simpler representation, we can often analyze
the abstract model to determine properties of the original specification or program.
In particular, predicate abstraction has recently emerged as a promising new tech-
nique; the high-level idea is to map a concrete system to a finite state boolean
representation defined by a set of “interesting” predicates over program variables.
The hypothesis is that this model is expressive enough to represent a wide range of
important program properties and can in general be analyzed more effectively than
the original specification or program. Another implicit assumption at the foun-
dation of predicate abstraction is that concrete systems can be easily mapped to
boolean representations. Recent results seem to support these claims, suggesting
the promise of predicate abstraction for performing software analysis.

Since boolean representations are relatively new, much of the work in this area
so far has been directed towards the basic mechanisms of predicate abstraction.

1



Thus, the bulk of this paper (Section 2) provides an overview of the abstraction
process as formalized in Graf/Saı̈di’s pioneering work [7], as well as refinements
and extensions of the original abstraction procedure. We then survey the different
ways in which these boolean models have been analyzed to tackle a variety of
example problems (Section 3). As a relatively new and very active area of research,
there remain several open questions about predicate abstraction that are discussed
in Section 4. Finally, we draw some conclusions about this approach and attempt
to evaluate its potential in the realm of software analysis.

2 Predicate abstraction

In general, a program abstraction is only useful for proving things about the origi-
nal specification or program if it preserves the concrete system’s properties. Using
the definitions provided in [9], an abstraction is weakly preserving if every prop-
erty that is true in the abstract model is also true in the original system, whereas a
strongly preserving abstraction retains exactly the same set of properties. A related
notion is that of over and under approximation. If the abstraction’s behaviours
are a superset of the original system’s behaviours, then the abstract model is over
approximating, whereas when the converse is true, the abstraction is under approx-
imating. Thus, over approximating abstractions are weakly preserving.

The objective of predicate abstraction is to convert a given concrete system into a
property preserving boolean representation whose reachable abstract states

���
cor-

respond to an approximation of the original system’s reachable concrete states
���

.
In some cases, it is possible to achieve a correspondence that results in a strongly
preserving abstraction. However,

���
often represents an over approximation of

the concrete system’s behaviours, making the boolean model weakly preserving.
In either case, once the specification or program has been abstracted we are able
to analyze the abstract system to prove meaningful properties of the concrete sys-
tem. More specifically, if we can show that some invariant holds over

���
, we are

guaranteed via property preservation that this invariant also holds over
���

.

2.1 Concrete and boolean systems

Before diving into the details of the predicate abstraction procedure, (i.e. how to
compute

���
) we first define some terms and notation (borrowed primarily from [5])

that will be useful later in this discussion. In general, we can think of a concrete
system as a set of commands or statements with rules that determine allowable

2



transitions between them. The system’s state at any point during execution can
be represented as a record whose fields indicate the current value of each concrete
variable. For example, for a program that has only two variables, � and � , we might
represent its concrete state as � ����� � ���
	 � ����

. Notice that the domain of any
individual variable might be infinite (e.g. a variable of integer type). Furthermore,
with dynamically allocated memory, the number of program variables may also
be infinite. As a consequence, the concrete state space is potentially unbounded,
a prohibitive property for many types of analyses, especially those with a model
checking flavour that search the state space exhaustively.

Predicate abstraction, as introduced in [7], proposes a transformation of this con-
crete system using a set of predicates � ��������	������������

, defined over program
variables. The choice of these predicates is a significant issue that is discussed
later in the paper. For now, however, let us assume that they are manually selected.
Given a concrete system and � , the idea is to create an abstract system with a set
of � boolean variables � ����� � 	�������	 � � �

that correspond to the predicates in � .
Thus, the abstract system’s state at any point during execution is a truth assignment
to � that represents the current values of the � predicates. For example, if � and
� are concrete variables, with � �!�" � ��� �$# 	�" �&%(')# � , then the abstract state
might be � �*�+��� � �-,/.10�23	 �546�87�9
:<;�23�

, if � and � are both equal to the same
negative number. Note that, unlike the concrete system, the abstract state space is
finite (exponential in � ).

Often, it is useful to talk about sets of (rather than individual) concrete or abstract
states. A collection of abstract states can be represented conveniently as a boolean
formula on � , and a group of concrete states can be written as a first-order formula
over predicates in � . Notice that a set of concrete states thus defined can be infinite
in size, a fact that is consistent with our knowledge that concrete systems are po-
tentially unbounded. This notation will be useful in describing the actual process
of predicate abstraction.

2.2 The abstraction procedure

The crux of predicate abstraction is the computation of
� �

given
� �

and � . There
are two basic ways to go about doing this. We can either statically abstract all
concrete transitions to generate the abstract state system, or we can dynamically
construct an abstract state graph by repeatedly applying the concrete transitions to
the abstract states. Since the second approach can eliminate unnecessary abstract
states after executing each transition, it has the potential to generate a more precise
approximation of

� �
, at the cost of a much more intensive computation. Since the

3



quality of the resulting abstraction has an impact not only on the speed of analysis,
but also potentially what we can succesfully prove, it seems that most published
predicate abstraction results perform the more expensive and more precise dynamic
computation of the abstract state graph. Furthermore, the dynamic approach seems
more appropriate for abstracting programs written in imperative languages such as
C or Java. In this context, executing concrete transitions roughly corresponds to
updating the current approximation of

� �
after each program statement. 1

The key operation at the core of both the static and dynamic abstraction algorithms
is the abstraction function � that maps a set of concrete states to a set of abstract
states. Abstracting a single concrete state � � simply involves evaluating each pred-
icate in � given the variable values at � � to determine a truth assignment for the �
boolean variables in � . As explained in Section 2.1, this assignment corresponds
to an abstract state � � . However, abstracting a set of concrete states, represented
by the first-order formula

�
, is slightly more involved. We can define the answer

we’re looking for in terms of the concretization function � . If
7

is a boolean for-
mula over � representing a set of abstract states, then

�
"<7 # ��7 "<� ��� � � 	�������	 � ��� � � # (1)

In other words, � maps a set of abstract states to the set of concrete states repre-
sented by the first-order formula on the righthand side of Equation 1 by replacing
each boolean variable in � with its corresponding predicate in � . Given this defi-
nition, [6] describes �

"�� # as the strongest boolean formula on � that satisifies

���
�
"
�
"�� # # (2)

2.3 Predicate abstraction results

Although the abstraction process is relatively easy to describe, developing practical
predicate abstraction algorithms for real concrete systems involves a number of
challenges, including efficient implementation of � and handling source language
features such as pointers and procedures in C, and dynamically allocated memory
in object-oriented systems. This section surveys recent work that addresses these
issues.

1Clearly, many details have been omitted here, but a full explanation of these algorithms is beyond
the scope of this paper.

4



2.3.1 Efficient abstraction

As mentioned previously, the key step in the abstraction procedure is the com-
putation of �

"�� # . Implementing � efficiently is one of the main challenges in
designing a practical abstraction algorithm. To understand why this is a difficult
problem, consider the most naive approach. To come up with a boolean formula

7
that satisfies Equation 2, we could enumerate every possible formula over � , and
just test each one. As long as � contains a finite number of variables, this algo-
rithm will terminate; unfortunately, it requires approximately

� �
calls to a theorem

prover in order to verify every formula.

Efforts to develop more efficient algorithms have concentrated on quickly finding
“smaller” boolean formulas (i.e. ones that contain fewer literals) that satisfy Equa-
tion 2. Although we do not describe any implementations in detail, it is worth
noting that [5], [8], [2] and most recently [6] have demonstrated abstraction algo-
rithms that perform significantly better in practice than the naive exponential time
approach outlined above.

2.3.2 From specifications to real programs

One trend in the evolution of predicate abstraction algorithms is the natural shift
from concrete systems described in specification-like languages to those written in
real programming languages. Early work such as [7] and [5] demonstrated pred-
icate abstraction algorithms on programs written in relatively simple and limited
languages, often without features like pointers or procedures. However, recent
work by the SLAM group at Microsoft Research has taken significant steps towards
implementing predicate abstraction for systems specified in more widely-used lan-
guages.

In particular, C2BP is a tool developed by SLAM that (given a set of interest-
ing predicates) automatically computes a predicate abstraction for a C program,
converting it into a boolean program, which has the same control flow as the orig-
inal but contains only boolean variables [2]. The basic approach is to process
the original code line-by-line, updating the current approximation of the reach-
able abstract state space and generating appropriate boolean program statements.
Since the abstracted program can only contain boolean variables that correspond to
the specified predicates, some special language features are added to the abstract
representation, including a non-deterministic control expression (*) for modelling
conditional blocks and an unknown() value that is assigned to a boolean variable
when the effect of a C program statement on a predicate cannot be determined.

5



The primary contribution of this work is a set of general techniques for handling
language features such as, pointers and procedures when performing predicate ab-
straction. Due to aliasing it is often difficult to determine the effect of a C program
statement on any predicate that contains pointers or pointer dereferences, causing
potentially severe degradation of precision in the boolean program. C2BP tries to
mitigate this problem through aliasing information gleaned via a flow-insensitive
points-to analysis. In previous predicate abstraction work, procedures were han-
dled via inlining, essentially eliminating any modularity in the original system and
precluding the abstraction of recursive programs. C2BP supports modular predi-
cate abstraction (and thus, recursion) by conservatively estimating a called proce-
dure’s effect on predicates without resorting to inlining. This is done by providing
the caller with signatures of any function it calls that specify predicates over the
callee procedure’s formal parameters and return values. Although C2BPworks ex-
clusively on C programs, the authors point out that their techniques for handling
pointers and procedures are sufficiently general to be adopted for the abstraction of
programs “written in other imperative languages such as Java.”

Along these lines, [9] presents techniques for abstracting object-oriented languages
such as C++ or Java. In particular, one of its primary contributions is dynamic pred-
icate abstraction, a way to handle predicates that relate dynamic data (such as data
in the fields of class instances in C++). Their idea is to annotate predicates with
dynamic information that becomes available at runtime. Given the success of this
work and C2BP, it seems as if the push towards predicate abstraction algorithms
for popular languages is gaining momentum.

3 Analyzing boolean programs

Thus far, we have yet to discuss how boolean representations have been analyzed
to prove program properties. Since predicate abstractions are finite state systems,
model checking and other state space exploration algorithms will terminate when
applied to boolean models. As a result, model checking has been a popular ap-
proach when it comes to analyzing predicate abstractions [3, 2, 9, 7, 4, 8]. Most
of these analyses work by exploring the abstract state space and checking to make
sure a particular property holds in all reachable states, although some papers couch
this process in different terms. For example, [1] formulates the problem in terms
of Context-Free-Language (CFL) reachability. One notable exception is a recent
paper by Flanagan/Qadeer [6] that shows how boolean models can be used to auto-
matically determine loop invariants. The basic idea in this work is to first abstract

6



the original program and then, whenever a loop is encountered, to iteratively update
a candidate invariant (based on the specified predicates) until fixpoint is reached.

Although the goal of this section is not to describe all the different example pro-
grams on which predicate abstraction has been tested, it is worth mentioning a few
notable results to indicate the range of problems this approach can potentially ad-
dress. In [2], a number of toy programs are used to show how invariants computed
via predicate abstraction can be used to check for NULL pointer dererences, array
bounds violations, aliasing information and heap properties [2]. Small list parti-
tion and selection sort examples were also used in [6] to demonstrate the automatic
computation of loop invariants via boolean programs. There have also been a few
successful results using larger systems. [2] applied predicate abstraction to check
the saftey properties of 5 NT device drivers that ranged in size from 236 to 6500
lines of code. [6] and [9] also report successful tests on larger systems. These
results suggest that predicate abstraction can be used on systems with up to 50K
lines of code; however, the scalability of this approach beyond that remains an
interesting issue that is discussed in more detail in the next section.

One final result that is worth discussing is the use of predicate abstraction demon-
strated in [5]. Here, the authors abstract and analyze the FLASH cache protocol
in order to strengthen previously identified invariants. This work is significant be-
cause it suggests the application of boolean models as a component within a more
extensive verification system, rather than using predicate abstraction in isolation to
model check a specification or program.

4 Open problems

As mentioned earlier, predicate abstraction is a relatively recent idea, and as a
consequence, there are still many open issues regarding this approach. The most
general question involves the range of problems that are “suitable” for predicate
abstraction. In other words, what should this technique be used for? Section 3
presented results that suggest the promise of predicate abstraction for verifying
certain kinds of program properties. However, there does not seem to be any kind
of consensus yet on what class of properties are most naturally modelled using
predicates.

In some sense, it can be argued that practically any program property can be repre-
sented (although not necessarily very well) using predicates. After all, most invari-
ants can somehow be expressed as a predicate over program variables. However, to
illustrate how predicate abstraction may not be the right approach to take in some

7



situations, consider the following example. Suppose we need to perform constant
propagation, and instead of doing a data flow analysis, we want to use predicate
abstraction. For every constant that some program variable � could possible take
on, we could generate a predicate and then check to see which predicates hold
at various program points in order to propagate constants. Clearly, this is not a
good application for predicate analysis. However, beyond this very obvious case,
is there something general we can say about when predicate abstraction is (and is
not) appropriate?

One part of the answer may involve the issue of predicate selection raised earlier.
In the constant propagation example, one particularly objectionable component
of the predicate abstraction approach is figuring out all the possible values for �
so that we can specify the right predicates. Although there has been some work
in automating the selection of interesting predicates (i.e. generating � ) for loop
invariant computation via heuristics [6], it is unclear exactly how far such efforts
will advance, and since the definition of � is so crucial to the boolean model’s
expressiveness, this seems like an extremely important issue. As a result, one
factor in determining the class of suitable problems for predicate abstraction may
simply be how much user input and effort is necessary to generate � for various
programs and properties.

Another limitation may be the expressiveness of boolean representations. Although
recent work has extended the expressive power of predicate abstractions to handle
pointers, multiple procedures [2], dynamic data [9], and unbounded data struc-
tures [6], these approaches are not entirely general. Since predicates are not par-
ticularly good at modelling memory, it may turn out that some heap properties are
very difficult to verify using predicate abstraction. In addition, [2] points out some
difficulties in extending boolean representations to for modelling multi-threaded
programs.

Finally, there is the question of scale. Although boolean models definitely corre-
spond to finite state systems, state space explosion can still occur as the number of
predicates in � increases. Up until this point, nobody has attempted to run pred-
icate abstraction on really massive pieces of software, and it seems likely that a
significant amount of precision would have to be compromised in order to repre-
sent a very large concrete system with a reasonably-sized boolean model (i.e. one
that can still be model checked in a reasonable amount of time). Furthermore, as
the complexity of the call graph increases, it would be interesting to see how dra-
matically the precision of the abstract system degrades. Although [2] does make
an effort to address the abstraction of multi-procedure programs, there is still some
loss of information at call sites.

8



5 Conclusions

Predicate abstraction is a new program abstraction technique that represents con-
crete systems as finite state boolean models that are generally more amenable to
analysis than the original programs. At the beginning of this paper, we identified
two main hypotheses that motivate this line of research. The successful application
of predicate abstraction to a wide range of source programs and target properties
suggests that boolean representations are at least expressive enough to model a
useful (if not complete) set of language features and invariants. Furthermore, the
application of various analysis techniques to abstract boolean systems supports the
claim that predicate abstractions are convenient (or at least manageable) for the
purpose of analysis.

However, whether or not concrete systems can be “easily” mapped to boolean mod-
els is a bit less clear. As mentioned previously, the primary difficulty involves the
selection of appropriate predicates. Since � is so integral to the resulting abstrac-
tion’s usefulness, it seems important that efforts such as the one presented in [6] and
SLAM’s current NEWTON project succeed in automating (or at least, significantly
aiding) the process. As long as predicate selection does not become a prohibitively
tedious manual task, predicate abstraction seems to have potential as a technique
that can be incoroporated into practical verification and analysis tools.

Overall, predicate abstraction definitely seems worth pursuing. Hopefully, the
flurry of recent work in the area is an indicator that the software engineering com-
municty shares this feeling.

Acknowledgements

Many thanks to the PL posse (Todd Millstein, Sorin Lerner and Mark Seigle) for
numerous enlightening discussions about predicate abstraction and model check-
ing, as well as comments and suggestions on earlier drafts of this paper.

9



References

[1] T. Bal and S. Rajamani. Boolean programs : A model and process for software
analysis. Technical report, Microsoft Research, 2000.

[2] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic predicate
abstraction of C programs. In PLDI, 2001.

[3] T. Ball, A. Podelski, and S. Rajamani. Boolean and cartesian abstraction for
model checking C programs. In TACAS, pages 268–283, 2001.

[4] Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker for
boolean programs. In SPIN, pages 113–130, 2000.

[5] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate
abstraction. In Computer Aided Verification, pages 160–171, 1999.

[6] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software verifi-
cation. In POPL, 2002.

[7] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In
O. Grumberg, editor, Proc. 9th INternational Conference on Computer Aided
Verification (CAV’97), volume 1254, pages 72–83. Springer Verlag, 1997.

[8] S. Saidi and N. Shankar. Abstract and model check while you prove. In Com-
puter Aided Verification, pages 443–454, 1999.

[9] W. Visser, S. Park, and J. Penix. Using predicate abstraction to reduce object-
oriented programs for model checking. In FMSP, pages 3–12, 2000.

10


