
Refactoring Tools for Extreme Programming:

An Overview

Dan B Goldman
CSE503: Software Engineering

February 25, 2002

Contents

1 Introduction 2
1.1 What is Refactoring? . 2
1.2 What is Extreme Programming? 3

2 Refactoring Research 3
2.1 Fundamentals . 3
2.2 Automating Refactorings . 4
2.3 Automating “Smell Detection” 6
2.4 Relationship to Extreme Programming 8
2.5 Other Work . 8
2.6 Topics for Future Research . 9

3 Tools 10
3.1 Smalltalk Tools . 10
3.2 Java Tools . 10
3.3 Python Tools . 12

1

1 Introduction

I find the idea of refactoring interesting because it meshes well with my own
philosophy of software development, and provides a “way out” from the con-
stant redefinition and redevelopment of systems that happens so often when
programmers get tired of their old design. Refactoring says to those program-
mers: Not only is it OK to spend time improving the old system, but you can
end up with as good or a better design than if you were to write a new one from
scratch. It bestows honor and prestige to maintenance by giving it the structure
and organization it often lacks.

This paper will attempt to survey the state of the art in refactoring research.
Section 1 introduces the concepts of refactoring and extreme programming,

attempting to define each of them concisely and elaborate a bit on their rela-
tionship.

Section 2 covers a selection of recent literature related to refactoring. It
includes subsections on the fundamental work in the area, on automating their
implementation, and attempts to assist the user in determining when to use
refactorings.

Finally, section 3 lists some available tools which implement automated refac-
torings.

1.1 What is Refactoring?

Refactoring has as many definitions as practitioners, but perhaps the most con-
cise and certainly the most widely cited definition is as follows: “A change
made to the internal structure of software to make it easier to understand and
cheaper to modify without changing its observable behaviour.” [FBB+00] A
more practical-minded definition is “a technique in which a software engineer
applies well-defined source-level transformations with the goal of improving the
code’s structure and thus reducing subsequent costs of software evolution.”
[KEGN01].

Refactoring can be said to be a formalization of the processes most good
programmers do instinctively to restructure their code. It is a way of describing
any behaviour-preserving program modification in terms of atomic procedures
of renaming, moving, deleting, and introducing new code. Refactoring is best
distinguished from other program evolution and restructuring paradigms by the
atomicity of these operations. This indivisibility of individual refactorings has
two important consequences: First, it makes manual implementation practical,
by suggesting that program restructurings can be divided into bite-size pieces.
Second, it makes it possible to prove correctness of certain restructurings, as
discussed in section 2.1.

It’s important to note that refactorings don’t change or improve software
from a functional point of view: The program is intended to do the same thing
after refactoring that it did before refactoring. In this respect it shares traits
with code transformation and optimization in compilers. But whereas the goal
of code transformation is generally computational or caching efficiency, the goal

2

of refactoring is readability, reusability, extensibility, or some combination of
the above.

1.2 What is Extreme Programming?

The popularity of refactoring has evolved alongside that of Extreme Program-
ming (XP), a software development methodology which interleaves design and
coding, rather than considering them as serial processes. Proponents of XP
have argued that much time in traditional software development is wasted de-
veloping extensible designs which are never utilized. Furthermore, in traditional
software development there is no established route for changes to requirements
to propagate through specifications and design to code. [XP]

The intermingling of design and coding in XP is intended to recognize and
embrace the fact that designs change throughout the development process. In
order to cope with these constant changes, refactoring is seen as an essential
component of Extreme Programming. Indeed, one of its basic tenets is to refac-
tor on a continual basis. [Rob99]

This continual refactoring must necessarily be accompanied by extensive unit
testing. In Extreme Programming, each refactoring is followed by a test cycle
to verify that the program still behaves properly.

(Extreme Programming espouses a plethora of specific techniques for soft-
ware development beyond refactoring and unit testing. Some of them, such as
Pair Programming, are quite unique and controversial, and sources of consid-
erable interest. However, in this paper we will not expend much discussion on
these other aspects of XP.)

2 Refactoring Research

This section will describe some of the fundamental work in refactoring, followed
by approaches for automating its execution and approaches for guiding selections
of refactorings. I’ll also cover a few papers which don’t fit cleanly into these
categories, and give my opinion on the most interesting areas for future research.

2.1 Fundamentals

The fundamental work on refactoring has focused on the definitions and mechan-
ics of the refactoring operations, and proof of their correctness. The definition of
correctness for a refactoring is that the operations did not change the behaviour
of the program, and therefore any program which meets its specifications before
a refactoring will continue to meet those specifications afterwards. Since refac-
torings in general are operations on (nearly) arbitrary source code, these proofs
generally pair a precondition defining the circumstances in which a given refac-
toring can be applied, along with demonstrations that the dependency graphs
are unchanged by the application of the refactoring. Opdyke [Opd92] has pre-
sented twenty-six low-level refactorings and three high-level ones, and provides

3

proofs of their correctness.
Roberts [Rob99] has augmented Opdyke’s definitions by adding postcondi-

tion assertions. This simplifies analysis of sequential refactoring: Compositions
of refactorings can be chained together by showing that the precondition of one
is guaranteed by the postcondition of the previous.

Fowler, Beck and Brant have summarized the work of Opdyke by cataloguing
his refactorings (and many others which he has collected over the years) in a
reference form which makes them easy to find and implement. [FBB+00] His
work is considered by many to be the definitive reference in the field.

2.2 Automating Refactorings

It’s been observed [KEGN01] that refactoring isn’t applied as often as might
be useful. One of the reasons cited is that it can be tedious and error-prone to
follow the mechanical steps involved. Therefore, a major focus of Refactoring
research has been in the development of techniques for automating these steps.

Although Fowler’s taxonomy of refactorings [FBB+00] does not distinguish
refactorings by their scope, he notes elsewhere [Fow] that not all refactorings
are equal from the point of view of automation. Some simple ones, like Rename
Method or Rename Variable, are just identifier changes, and are therefore little
more than syntactic modifications. But others, like Extract Method – which
creates a new method from a tagged section of code – require considerably more
semantic analysis. Also, refactorings are language-dependent. Obviously Move
Method – which moves a method to a different class – only applies to object-
oriented languages, but there are more subtle language dependencies discussed
below. [OJ93] gives a detailed analysis of some of these issues with regards to
creating abstract superclasses via refactoring.

Smalltalk Refactoring Browser

The best known and most widely used work in the area of automation has been
the Smalltalk Refactoring Browser [RBJ97, Rob99], which incorporates refac-
toring operations directly into a Smalltalk source code browser. Its main selling
points are the number of refactorings implemented, and its integration into the
Smalltalk development tools. One of the criteria for its design is speed, so
refactorings which might be slow to implement automatically have been omit-
ted. Nonetheless, this tool automates over two dozen refactorings.

Roberts et al. have noted that the Extract Method refactoring is fairly
complex when code being extracted uses variables local to the original method
[RBJ97]. If the variables are reference but not assigned, they can simply be
passed as parameters to the newly created method. If they are used only in
the extracted code, they can become temporaries in the new method. But if
the variables are assigned in the extracted code and referenced in the original
method, then the code can’t be extracted, because Smalltalk passes by value.
This is an example of the language-dependence of refactorings.

4

The Browser takes advantage of Smalltalk’s reflective facilities to create an-
notated parse trees. These trees are used both for context detection (matching
trees) and also code modification. Smalltalk’s dynamic typing makes some code
impossible to statically analyze, so dynamic analysis is used to determine the
actual types of variables for refactoring. The browser also uses method wrap-
pers to perform refactorings dynamically, using “lazy evaluation” to find parts
of the code that access a method being renamed or moved. This limits the com-
pleteness of the algorithm, since pieces of code not exercised by the test suite
will never be analyzed and refactored. However, this limitation has been found
to be unobjectionable in practice, and the tool is widely used. [RBJ97]

Graphical program restructuring

Other researchers have taken a visualization approach to refactoring. Whereas
the Smalltalk Refactoring Browser operates in a largely text-based environ-
ments, others have attempted to develop systems in which the code and de-
pendencies are displayed graphically. One such prototype tool for manipulating
Scheme programs is described in [GB93]. Using this tool, visual representations
can be manipulated using drag-and-drop. These manipulations implicitly initi-
ate refactorings, creating new classes and moving variables or methods between
classes in the underlying source code.

This approach is limited to relatively gross transformations involving whole
objects or methods. Refactorings involving code fragments still must rely on a
text-based interface to specify the relevant sections. The authors also concede
that the abstraction to visual representations may obscure subtle relationships
and implementation details which are pertinent to the design of the program as
a whole.

Refactoring by Field

Even in text-selection or browser-based tools, refactorings involving code frag-
ments present special problems in user interface. The sections of code which
must be extracted to form a new method may not be contiguous, and may even
require unrolling or duplication of loops and other control structures.

One approach to assisting the user in selecting code fragments for Extract
Method and related refactorings takes advantage of a diagnostic called program
slicing. Program slicing “extracts from code of a program a set of statements
that may affect the value of a variable of interest at a specified program point.”
[Mar01]. One may think of this in terms of “narrowing the field of view” to only
those statements which contribute to the value of a variable.

In Maruyama’s prototype tool for method extraction, a programmer indi-
cates variables in a program rather than selecting code fragment text. The
system automatically detects the lines of code which are dependent on and de-
pended upon by that variable at that program point, and constructs a number of
alternative refactored methods involving contiguous blocks of those statements.
The user may then select the most appropriate choice for his or her needs. This

5

technique is still quite nascent; it’s not clear whether it will scale well to “real”
code due to the computational demands of program slicing.

Implementation Concerns

Although a number of tools do exist which support strongly typed languages
(see section 3), they have been slower to appear, and many are limited in scope,
implementing just a few of the simpler syntactic refactorings. Seguin provides
a brief discussion of some of the difficulties of implementing the Push Up Field
to Superclass refactoring in Java [Seg00]. The central difficulty occurs when
multiple sibling classes have a variable of the same name with different types or
scopes. The author implemented a simple but potentially problematic solution
to this problem in his JRefactory tool, by changing the scope of the variable to
protected and leaving identically named fields with different types untouched,
so they may continue to override the refactored superclass field.

2.3 Automating “Smell Detection”

Automating the mechanical aspects of refactoring is still a topic of active tool
development, but most still rely on an expert user to determine the need for
a refactoring in any given situation. Kent Beck and Martin Fowler [FBB+00]
describe this process of looking for structures in the code that suggest the pos-
sibility and desirability of refactoring as finding “bad smells” in code. Each
“smell” is associated with refactorings that are likely to improve the code’s
readability and reusability. Although they opine that “no set of metrics rivals
informed human intuition,” that hasn’t stopped anyone from trying; this seems
to be a lively area for speculative research. Indeed, it seems likely that de-
sign problems which may be overlooked or ignored by a programmer might be
identified by an automated or semi-automated approach.

Invariants approach

One approach to smell detection takes advantage of existing tools for program
invariant detection. In [KEGN01], the authors describe a set of refactoring pre-
and postconditions and “smells” in terms of program invariants. The Daikon
invariant detection tool is used as a preprocess to detect invariants. Then by
looking for these predefined patterns in the computed invariants, their tool can
suggest likely refactorings. Daikon uses dynamic analysis to identify invari-
ants, so this approach can identify smells which are not obvious from a static
analysis of the code, even those which are difficult for a skilled programmer to
detect. The tool has been tested on a large software system, and found to make
orthogonal suggestions to a clone-detection tool based on text-based pattern
matching.

6

Metrics approaches

Many “smells” are not as deterministic. The decision to move a method or field
to a different class is rarely motivated by an invariant property of that element;
rather it is dependent on more subjective concerns like “method Z of class A
is called more often from class B than A, and uses more fields from class B
than A, therefore I will move it from class A to class B.” Fowler describes this
smell as Feature Envy : “a method that seems more interested in a class other
than the one it actually is in” [FBB+00]. While this subjective diagnostic may
be easy to utilize for methods which only reference a few variables, it doesn’t
help determine whether moving a method or a field will give better results. In
fact, moving a field can be quite hazardous, as there may be a huge number of
other methods which will need to be modified. This suggests using statistical
methods to search code for smells, and several researchers have taken this tack:

The Crocodile tool utilizes a distance-based cohesion metric which counts
numbers of shared properties or attributes between code entities [SSL01]. This
metric is used to compute the distances between methods and attributes. The
distances can then be used as spring lengths in a dynamic point-mass spring
simulation, resulting in a static three-dimensional scene which can be viewed
and navigated using any VRML browser. Methods are represented as spheres
and attributes as cubes, using different colors to represent members of different
classes.

Such a representation gives a concrete visualization of the dependencies in
the code, depicting related entities as being physically close together and unre-
lated entities further apart. With such a visualization, Feature Envy is readily
observable as an object of one color which neighbors several objects of a different
color. Although running the simulation can be quite slow on current systems,
techniques such as this may prove viable in the future for targeting refactorings.

A much more aggressive and unusual metrics-based approach is taken in
[MS99]. Unlike the technique used in [SSL01], which relies on a static analysis
for its metrics, or [KEGN01], which uses dynamic analysis to find invariants,
this method assigns weights to dependencies between methods according to
how often they have been overridden by users of a framework. This gives a
historical, and in fact a user-dependent metric for choosing refactorings, based
on the observation that programmers will reuse and modify their frameworks
in a consistent manner over time. Extract Method refactorings are executed
automatically to assimilate “hot spots” in the framework, in an attempt to
reduce the number of methods which need to be overridden.

This particular application leads to different refactorings for different pro-
grammers – which seems likely to cause confusion and incompatibility. However,
the fundamental concept of statistically analyzing code modification history ap-
pears potentially quite useful. (It isn’t explicitly characterized this way by
[MS99], but I will consider this sort of ‘historical analysis’ as a complement to
static and dynamic analyses.)

7

Fine-grained restructuring

The most radical approaches to program restructuring abandon the program-
mer’s original design, attempting to reconstruct it based purely on automatically-
detected similarity relationships.

The Guru tool takes just such an approach to restructuring code written
in Self (a lisp-like language) by discarding the programmer’s original class hi-
erarchy and method boundaries, replacing them with a “fully-factored” class
hierarchy which aggressively combines duplicated code all the way down to the
expression level [Moo96]. (The tool is named Guru because it assists in Self -
improvement.) This process is slow – a small class hierarchy took 8 hours to
restructure – and apparently limited to languages with similar properties to
Self, so it’s not clear if this is a viable tool for many real-world systems. Fur-
thermore, this tool could be described as a program restructuring tool rather
than a refactoring tool, since it takes on the much larger task of reorganizing
an entire class hierarchy or framework. However, I include it here because the
mechanics of the restructuring are described in terms of atomic refactorings.

2.4 Relationship to Extreme Programming

A few researchers have explicitly examined the relationship between Extreme
Programming and Refactoring. [Deu01] has analyzed how Extreme Program-
ming affects program understanding. XP’s emphasis on people and source code
suggests that program understanding is at the core of XP, so an attempt to
understand the process in terms of program understanding is crucial to eval-
uating its strengths and weaknesses. Van Deursen finds that the very process
of refactoring enhances program understanding by forcing the programmer to
systematically recognize and refine the relationships between elements of a pro-
gram. However, refactoring in the context of collective code ownership can lead
to conflicts: “what is intuitive and clear to one programmer may be hard to fol-
low for another.” [Deu01] Furthermore, as code is continually changing, more
programmers may need to reunderstand code they once understood, even if the
functionality is unchanged. [KHH+00] found that as the size of a code base
increases, the proportion of time spent refactoring increases relative to the time
spent developing new features. While this is not unexpected (refactoring can
be seen as a maintenance task), it does point out some of the drawbacks of
refactoring in the context of Extreme Programming.

2.5 Other Work

The following recent work is related to refactoring but doesn’t fit cleanly into
any of the previous categories:

Refactoring and Design

Some authors have begun to explore refactoring within the larger scope of design
processes.

8

[Cin00] describes a prototype tool (DPT - Design Pattern Tool) in which a
design pattern is chosen as a target for a code transformation. The transfor-
mation is decomposed into a sequence of minipatterns, which are design motifs
appearing frequently in catalogues of design patterns. In one example, the
Factory Method pattern is considered to be composed of three constituent mini-
patterns, Abstraction, Encapsulate Construction, and Abstract Access. Each of
these minipatterns can be associated with a minitransformation, which is a se-
quence of refactorings leading to the implementation of the desired minipattern.
By composing transformations entirely of refactorings which have been proven
to preserve behaviour, the entire code transformation can be proven as such.

An even wider view extends the concept of refactoring beyond source code
to encompass design models as well. [BX01] describes a cascaded sequence
of refactoring feature models (eg. changing required features to optional or
vice versa), refactoring use cases (eg. abstracting actors, merging actors or
behaviours, etc.), refactoring architectural models (eg. splitting or merging
interfaces, promoting or delegating services), as well as the “usual” refactorings
involving class hierarchy and source code. This view may be too abstract to be
practical...

2.6 Topics for Future Research

With such a limited overview of the active research in refactoring and related
techniques, it’s difficult to assess what the most promising avenues of future
research might be. But speculation is more fun than analysis, so here goes...!

Although refactoring has certainly begun to take hold in a variety of pro-
gramming languages, it seems to have evolved in languages with strong reflective
capabilities, like Smalltalk. This isn’t too surprising: The programmers devel-
oping refactoring tools are naturally most likely to write them using the same
language they are thinking about refactoring: The domain knowledge is the
same both for the problem and the implementation of a solution. However,
this suggests that refactoring might benefit from even stronger integration of
reflective features in languages themselves.

For example, the Python refactoring tool Bicycle Repair Man (see 3.3) is
built on a framework which replaces python’s own parser module with its own
wrapper, giving a set of higher level tools to the programmer who wants to
implement refactorings. To change the name of a variable local to a module, one
calls the parser function to evaluate the module, then walks the parse tree to find
and rename all instances of the identifier, and re-emits the source code from the
parse tree. All of this requires only a few dozen lines of code. Although native
python does provide basic access to its own parser, the functions in the above
example which rename identifiers and re-emit source code were implemented in
the wrapper code. It’s not hard to imagine that structured support for these
types of operations in other languages could make both refactoring and smell
detection more easily and widely implemented.

There are also ways in which improved support for refactoring in integrated
development environments could lead to qualitative leaps in its applications.

9

One specific problem noted by [RBJ97] is that refactoring a framework or library
often requires clients to refactor their own code in nontrivial ways. They suggest
including “packages of refactorings” with each new code release. Much like a
software patch, these packages could be executed on the client’s code base to
automatically implement the necessary changes to work with the new code.

Finally, the concept of historical analysis (see 2.3) could be combined with
machine learning techniques to create some really unique smell-detection meth-
ods. [MS99] offers a first stab in that direction, whereas [DDN00] discusses how
to identify refactorings executed by hand by “expert programmers”. One could
create a large database of such manual refactorings, paired with the sections of
parse trees they impact, and try to mine patterns from the commonalities. By
identifying similar patterns in other code, a machine learning algorithm might
be able to identify bad smells using those learned heuristics. Some day perhaps
we’ll have jumping paper clips in our code browsers asking us:

”Are you sure you don’t want to put that method in another class?”...

3 Tools

The following is a summary of some of the tools available with refactoring
features, for a variety of programming languages and platforms.

3.1 Smalltalk Tools

Smalltalk Refactoring Browser

http://st-www.cs.uiuc.edu/users/brant/Refactory

The best-known refactoring tool, this integrated SmallTalk development en-
vironment features 28 automated refactorings. The original browser has been
ported by the original authors to the VisualWorks, ENVY, and IBM VisualAge
IDEs, though others have implemented ports on other platforms: The code is
open source.

3.2 Java Tools

IntelliJ Idea

http:www.intellij.com/idea

This commercial IDE was designed with refactoring features in mind from
the start. Martin Fowler [Fow] has noted this as one of the first working java
refactoring tools to cross the “rubicon” of refactorings requiring parse tree anal-
ysis. The latest version features 25 refactorings and has been tested on Windows
and Linux. It runs natively in java, using JDK 1.3.

10

XRefactory

http://xref-tech.com/speller

This shareware product is an emacs-based refactoring browser. It imple-
ments about 20 refactorings in java (and about 5 in C), and is notable for its
indexing speed: It has been tested to index 1 million lines of java code in 2
minutes, and updates the index incrementally. It can also convert source code
to hyperlinked HTML.

DPT

http://dpt.kupin.de/

This free tool, developed in a research context, includes 25 refactorings and
‘wizards’. It is written in Java, and has been tested under Windows and Linux.

JFactor

http://www.instantiations.com/jfactor

This commercial plugin for VisualAge Java implements 17 automated refac-
torings.

JRefactory

http://jrefactory.sourceforge.net

Jrefactory is a tool with a command line interface as well as JBuilder and
Elixir plugins. It implements about 15 refactorings in these environments.

Transmogrify

http://transmogrify.sourceforge.net

This open source plugin for JBuilder and Forte4Java implements 5 common
refactorings.

Retool

http://www.chive.com/retool.htm

This commercial open tool for JBuilder has some primitive renaming and
extract method refactorings.

11

3.3 Python Tools

Bicycle Repair Man

http://bicyclerepair.sourceforge.net

This open source project, still in alpha stage, has only one refactoring at the
present time.

PythonWorks

http://www.pythonworks.com

This Python IDE has announced refactoring support in their next version,
and the authors have shown demonstrations at international conferences, but
the currently available version does not yet have these features.

References

[BX01] Greg Butler and Lugang Xu. “Cascaded Refactoring for Framework
Evolution.” Proceedings of 2001 Symposium on Software Reusability,
ACM Press, 2001, pp. 51-57.

[Cin00] Mel Ó Cinnéide. “Automated Refactoring to Introduce Design Pat-
terns.” Proceedings of the International Conference on Software En-
gineering (Doctoral Workshop), Limerick, 2000.

[DDN00] Serge Demeyer, Stéphane Ducasse and Oscar Nierstrasz, “Find-
ing Refactorings via Change Metrics,” Proceedings OOPSLA 2000
(Object-Oriented Programming, Systems, Languages, and Applica-
tions), ACM Press, October 2000

[Deu01] Arie van Deursen. “Program Comprehension Risks and Opportuni-
ties in Extreme Programming.” Proceedings of the Eighth Working
Conference on Reverse Engineering, Oct. 2-5, 2001, pp. 176-185.

[Fow] Martin Fowler. Crossing Refactoring’s Rubicon.
http://www.martinfowler.com/articles/refactoringRubicon.html, February,
2002.

[FBB+00] Martin Fowler, Kent Beck, John Brant, William Opdyke, and
Don Roberts. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 2000.

[GB93] William G. Griswold and Robert W. Bowdidge. ICSE Workshop on
Studies of Software Design, 1993, pp. 127-139.

12

[KEGN01] Yoshio Kataoka, Michael D. Ernst, William G. Griswold, and David
Notkin. “Automated Support for Program Refactoring using Invari-
ants.” International Conference on Software Maintenance (ICSM
’01), Florence, Italy, November 6-10, 2001, pp. 736-743.

[KHH+00] Jeremy Kivi, Darlene Haydon, Jason Hayes, Ryan Schneider, and
Giancarlo Succi. “Extreme Programming: A University Team De-
sign Experience.” 2000 Canadian Conference on Electrical and Com-
puter Engineering, Halifax, NS, Canada, March 7-10, 2000, v. 2, pp.
816-820.

[Mar01] Katsuhisa Maruyama. “Automated Method-Extraction Refactoring
by Using Block-Based Slicing.” In Proceedings of SSR ’01, Sympo-
sium on Software Reusability, Toronto, Ontario, Canada, May 18-20,
2001, pp. 31-40.

[MS99] Katsuhisa Maruyama and Ken-ichi Shima. “Automatic Method
Refactoring Using Weighted Dependence Graphs.” Proceedings of
the 1999 International Conference on Software Engineering, Los An-
geles, California, USA, pp. 236-245.

[Moo96] Ivan Moore. “Automatic Inheritance Heirarchy Restructuring and
Method Refactoring.” In Proceedings of the Eleventh Annual Con-
ference on Object-Oriented Programming Systems, Languages, and
Applications, California, USA, pp. 235-250.

[Opd92] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

[OJ93] William F. Opdyke. “Creating Abstract Superclasses by Refactor-
ing.” In Proceedings of the 1993 ACM Conference on Computer Sci-
ence, pp. 66-73.

[Rob99] Donald Bradley Roberts. Practical Analysis for Refactoring. PhD
thesis, University of Illinois at Urbana-Champaign, 1999.

[RBJ97] ”A Refactoring Tool for Smalltalk.” Theory and Practice of Object
Systems, v. 3(4), 1997, pp. 253-263.

[Seg00] Christopher Seguin. “Refactoring Tool Challenges in a Strongly
Typed Language.” Addendum to the 2000 Proceedings of the Con-
ference on Object-Oriented Programming, Systems, Languages, and
Applications, Minneapolis, Minnesota, USA, pp. 101-102.

[SSL01] Frank Simon, Frank Steinbrückner, Claus Lewerentz. “Metrics
Based Refactoring.” In Fifth European Conference on Software
Maintenance and Reengineering March 14-16, 2001, pp. 30-38.

[XP] Extreme Programming: A Gentle Introduction,
http://www.extremeprogramming.org, February 2002.

13

