
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Computer Science & Engineering
Spring 2006

2

Software evolution
(recap from intro lectures)

• Software changes
– Software maintenance
– Software evolution
– Incremental development

• The objective is to use an existing code base as an
asset
– Cheaper and better to get there from here, rather than

starting from scratch
– Anyway, where would you aim for with a new system?

3

Why does it change?

• Software changes does not change primarily because it
doesn’t work right
– Maintenance in software is different than maintenance for

automobiles
• But rather because the technological, economic, and

societal environment in which it is embedded changes
• This provides a feedback loop to the software

– The software is usually the most malleable link in the chain, hence
it tends to change

• Counterexample: Space shuttle astronauts have thousands of extra
responsibilities because it’s safer than changing code

4

Kinds of change

• Corrective maintenance
– Fixing bugs in released code

• Adaptive maintenance
– Porting to new hardware or

software platform

• Perfective maintenance
– Providing new functions

• Old data, focused on IT
systems…now?

0

10

20

30

40

50

60

70

Lientz & Swanson

1980

Corrective

Adaptive

Perfective

5

High cost, long time

•Gold’s 1973 study
showed the fraction of
programming effort
spent in maintenance

•For example, 22% of
the organizations spent
30% of their effort in
maintenance

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100

6

Total life cycle cost

• Lientz and Swanson determined that at least
50% of the total life cycle cost is in
maintenance

• There are several other studies that are
reasonably consistent

• General belief is that maintenance accounts
for somewhere between 50-75% of total life
cycle costs

2

7

Open question

• How much maintenance cost is “reasonable?”
– Corrective maintenance costs are ostensibly not

“reasonable”
– How much adaptive maintenance cost is “reasonable”?
– How much perfective maintenance cost is

“reasonable”?
• Measuring “reasonable” costs in terms of

percentage of life cycle costs doesn’t make sense

8

High-level answer

• For perfective maintenance, the objective should
be for the cost of the change in the implementation
to be proportional to the cost of the change in the
specification (design)
– Ex: Allowing dates for the year 2000 is (at most) a

small specification change
– Ex: Adding call forwarding is a more complicated

specification change
– Ex: Converting a compiler into an ATM machine is …

9

Question: relationship of reuse to
evolution?

10

(Common) Observations

• Maintainers often get less respect than developers
• Maintenance is generally assigned to the least

experienced programmers
• Software structure degrades over time
• Documentation is often poor and is often

inconsistent with the code

• Is there any relationship between these?

11

Laws of Program Evolution
Program Evolution: Processes of Software Change

(Lehman & Belady)
• Law of continuing change
• “A large program that is

used undergoes continuing
change or becomes
progressively less useful.”
– Analogies to biological

evolution have been made;
the rate of change in
software is generally far
faster

• P-type programs
– Well-defined, precisely

specified
– The challenge is efficient

implementation
– Ex: sort

• E-type programs
– Ill-defined, fit into an ever-

changing environment
– The challenge is managing

change
• Also, S-type programs

– Ex: chess
12

Law of increasing complexity

• “As a large program is continuously changed, its
complexity, which reflects deteriorating structure,
increases unless work is done to maintain or
reduce it.”
– Complexity, in part, is relative to a programmer’s

knowledge of a system
• Novices vs. experts doing maintenance

– Cleaning up structure is done relatively infrequently
• Even with the recent interest in refactoring, this seems true.

Why?

3

13

Reprise

• The claim is that if you measure any reasonable
metric of the system
– Modules modified, modules created, modules handled,

subsystems modified, …
• and then plot those against time (or releases)
• Then you get highly similar curves regardless of

the actual software system
• A zillion graphs on http://www.doc.ic.ac.uk/~mml/feast1/

14

Statistically regular growth

• “Measures of [growth] are cyclically self-
regulating with statistically determinable trends
and invariances.”
– (You can run but you can’t hide)

• There’s a feedback loop
– Based on data from OS/360 and some other systems
– Ex: Content in releases decreases, or time between

releases increases
• Is this related to Brooks’ observation that adding people to

a late project makes it later?

15

And two others

• “The global activity rate in a large
programming project is invariant.”

• “For reliable, planned evolution, a large
program undergoing change must be made
available for regular user execution at
maximum intervals determined by its net
growth.”
– This is related to “daily builds”

16

Open question

• Are these “laws” of Belady and Lehman actually
inviolable laws?

• Could they be overcome with tools, education, discipline,
etc.?

• Could their constants be fundamentally improved to give
significant improvements in productivity?
– Within the past few years, Alan Greenspan and others have

claimed that IT has fundamentally changed the productivity of the
economy: “The synergistic effect of new technology is an
important factor underlying improvements in productivity.”

17

Approaches to reducing cost

• Design for change (proactive)
– Information hiding, layering, open

implementation, aspect-oriented programming,
etc.

• Tools to support change (reactive)
– grep, etc.
– Reverse engineering, program

18

Approaches to reducing cost

• Improved documentation (proactive)
– Discipline, stylized approaches
– Parnas is pushing this very hard, using a tabular form of

specifications
– Literate programming

• Reducing bugs (proactive)
– Many techniques, some covered later in the quarter

• Increasing correctness of specifications
(proactive)

• Others?

4

19

Program understand &
comprehension

• Definition: The task of building mental models
of the underlying software at various
abstraction levels, ranging from models of the
code itself to ones of the underlying application
domain, for maintenance, evolution, and re-
engineering purposes [H. Müller]

20

Various strategies

• Top-down
– Try to map from the application domain to the code

• Bottom-up
– Try to map from the code to the application domain

• Opportunistic: mix of top-down and bottom-up

• I’m not a fan of these distinctions, since it has to
be opportunistic in practice
– Perhaps with a really rare exception

21

Did you try to understand?

• “The ultimate goal of research in program understanding is
to improve the process of comprehending programs,
whether by improving documentation, designing better
programming languages, or building automated support
tools.” —Clayton, Rugaber, Wills

• To me, this definition (and many, many similar ones) miss
a key point: What is the programmer’s task?

• Furthermore, most good programmers seem to be good at
knowing what they need to know and what they don’t need
to know

22

A scenario

• I’ll walk through a simple scenario or two
• The goal isn’t to show you “how” to evolve

software
• Rather, the goal is to try to increase some of

the ways in which you think during
software evolution

23

When assigned a task to modify
an existing software system,
how does a software engineer
choose to proceed?

A view of maintenance

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Assigned

Task

? ? ? ? ?

When assigned a task to modify an
existing software system, how does a
software engineer choose to
proceed?

24

Sample (simple) task

• You are asked to update an application in response
to a change in a library function

• The original library function is
– assign(char* to, char* from, int cnt = NCNT)

– Copy cnt characters from to into from
• The new library function is

– assign(char* to, char* from, int pos,
 int cnt = NCNT)

– Copy cnt characters starting at pos from to into from
• How would you make this change?

5

25

Recap: example

• What information did you need?
• What information was available?
• What tools produced the information?

– Did you think about other pertinent tools?
• How accurate was the information?

– Any false information? Any missing true information?
• How did you view and use the information?
• Can you imagine other useful tools?

26

Source models
•Reasoning about a maintenance task is often
done in terms of a model of the source code

–Smaller than the source, more focused than the
source

•Such a source model captures one or more
relations found in the system’s artifacts

–There are many possible relations: calls, uses,
registers-interest-in, names, #includes, inherits-
from, etc.

27

Extracting source models
• Source models are extracted using tools
• Any source model can be extracted in

multiple ways
– That is, more than one tool can produce a given

kind of source model
• The tools are sometimes off-the-shelf,

sometimes hand-crafted, sometimes
customized

28

Information characteristics

ideal conservative

optimistic approximate

no false positives false positives

n
o
 f
a
ls

e

n
e
g
a
ti
v
e
s

fa
ls

e

n
e
g
a
ti
v
e
s

29

Ideal source models
• It would be best if every source model extracted was

perfect
– All entries are true and no true entries are omitted

• For some source models, this is possible
– Inheritance, defined functions, #include structure, etc.

• For some source models, achieving the ideal may be
difficult in practice
– Ex: computational time is prohibitive in practice

• For many other interesting source models, this is not
possible
– Ideal call graphs, for example, are uncomputable

30

Conservative source models
• These include all true information and

maybe some false information, too
• Frequently used in compiler optimization,

parallelization, in programming language
type inference, etc.
– Ex: never misidentify a call that can be made or

else a compiler may translate improperly
– Ex: never misidentify an expression in a

statically typed programming language

6

31

Optimistic source models
• These include only truth but may omit some

true information
• Often come from dynamic extraction
• Ex: In white-box code coverage in testing

– Indicating which statements have been
executed by the selected test cases

– Others statements may be executable with other
test cases

32

Approximate source models
• May include some false information and may omit

some true information
• These source models can be useful for

maintenance tasks
– Especially useful when a human engineer is using the

source model, since humans deal well with
approximation

– It’s “just like the web!”
• Turns out many tools produce approximate source

models

33

Static vs. dynamic
• Source model extractors can work

– statically, directly on the system’s artifacts, or
– dynamically, on the execution of the system, or
– a combination of both

• Ex:
– A call graph can be extracted statically by

analyzing the system’s source code or can be
extracted dynamically by profiling the system’s
execution

34

Must iterate
•Usually, the engineer must iterate to get a
source model that is “good enough” for the
assigned task

•Often done by inspecting extracted source
models and refining extraction tools

•May add and combine source models, too

35

Another maintenance task
• Given a software system, rename a given

variable throughout the system
– Ex: angle should become diffraction
– Probably in preparation for a larger task

• Semantics must be preserved
• This is a task that is done infrequently

– Without it, the software structure degrades
more and more

36

What source model?
• Our preferred source model for the task

would be a list of lines (probably organized
by file) that reference the variable angle

• A static extraction tool makes the most
sense
– Dynamic references aren’t especially pertinent

for this task

7

37

Start by searching
• Let’s start with grep, the most likely tool for

extracting the desired source model
• The most obvious thing to do is to search

for the old identifier in all of the system’s
files
– grep angle *

38

What files to search?

• It’s hard to determine which files to search
– Multiple and recursive directory structures
– Many types of files

• Object code? Documentation? (ASCII vs. non-
ASCII?) Files generated by other programs (such as
yacc)? Makefiles?

– Conditional compilation? Other problems?
• Care must be taken to avoid false negatives

arising from files that are missing

39

False positives
• grep angle [system’s files]
• There are likely to be a number of spurious

matches
– …triangle…, …quadrangle…

– /* I could strangle this programmer! */

– /* Supports the small planetary rovers
 presented by Angle & Brooks (IROS ‘90) */

– printf(“Now play the Star Spangled Banner”);

• Be careful about using agrep!

40

More false negatives
• Some languages allow identifiers to be split

across line boundaries
– Cobol, Fortran, PL/I, etc.
– This leads to potential false negatives

• Preprocessing can hurt, too
– #define deflection angle
...
deflection = sin(theta);

41

It’s not just syntax
• It is also important to check, before

applying the change, that the new variable
name (degree) is not in conflict anywhere
in the program
– The problems in searching apply here, too
– Nested scopes introduce additional

complications

42

Tools vs. task
• In this case, grep is a lexical tool but the

renaming task is a semantic one
– Mismatch with syntactic tools, too

• Mismatches are common and not at all
unreasonable
– But it does introduce added obligations on the

maintenance engineer
– Must be especially careful in extracting and then using

the approximate source model

8

43

Finding vs. updating
• Even after you have extracted a source

model that identifies all of (or most of) the
lines that need to be changed, you have to
change them

• Global replacement of strings is at best
dangerous

• Manually walking through each site is time-
consuming, tedious, and error-prone

44

Downstream consequences
• After extracting a good source model by

iterating, the engineer can apply the
renaming to the identified lines of code

• However, since the source model is
approximate, regression testing (and/or
other testing regimens) should be applied

45

Griswold’s approach

• Griswold developed an approach to
meaning-preserving restructuring

• Make a local change
– The tool finds global, compensating changes

that ensure that the meaning of the program is
preserved

• What does it mean for two programs to have the
same meaning?

– If it cannot find these, it aborts the local change

46

Simple example

•Swap order of formal
parameters

• It’s not a local change nor a
syntactic change

• It requires semantic knowledge
about the programming language

• Griswold uses a variant of the
sequence-congruence theorem
[Yang] for equivalence

– Based on PDGs (program
dependence graphs)

• It’s an O(1) tool
– The user touches only one place

47

Limited power
• The actual tool and approach has limited power
• Can help translate one of Parnas’ KWIC decompositions to

the other
• Too limited to be useful in practice

– PDGs are limiting
• Big and expensive to manipulate
• Difficult to handle in the face of multiple files, etc.

• May encourage systematic restructuring in some cases
• Some related work specifically in OO by Opdyke and

Johnson
• Question: How do you find appropriate restructuring?

48

Star diagrams [Griswold et al.]

• Meaning-preserving restructuring isn’t going to
work on a large scale

• But sometimes significant restructuring is still
desirable

• Instead provide a tool (star diagrams) to
– record restructuring plans
– hide unnecessary details

• Some modest studies on programs of 20-70KLOC

9

49

A star diagram

50

Interpreting a star diagram

• The root (far left) represents all the instances of the
variable to be encapsulated

• The children of a node represent the operations and
declarations directly referencing that variable

• Stacked nodes indicate that two or more pieces of code
correspond to (perhaps) the same computation

• The children in the last level (parallelograms) represent the
functions that contain these computations

51

After some changes

52

Evaluation

• Compared small teams of programmers on small
programs
– Used a variety of techniques, including videotape
– Compared to vi/grep/etc.

• Nothing conclusive, but some interesting
observations including
– The teams with the star diagram tools adopted simpler

strategies for handling completeness and consistency

53

My view

• Star diagrams may not be “the” answer
• But I like the idea that they encourage

people
– To think clearly about a maintenance task,

reducing the chances of an ad hoc approach
– They help track mundane aspects of the task,

freeing the programmer to work on more
complex issues

– To focus on the source code
54

Another task: isolating a subsystem

•Many maintenance tasks require identifying and
isolating functionality within the source

–sometimes to extract the subsystem
–sometimes to replace the subsystem

10

55

Mosaic
• The task is to isolate and

replace the TCP/IP
subsystem that interacts with
the network with a new
corporate standard interface

• First step in task is to
estimate the cost (difficulty)

56

Mosaic source code

•After some configuration and perusal, determine
the source of interest is divided among 4
directories with 157 C header and source files

•Over 33,000 lines of non-commented, non-blank
source lines

57

Some initial analysis
• The names of the directories suggest the

software is broken into:
– code to interface with the X window system
– code to interpret HTML
– two other subsystems to deal with the world-

wide-web and the application (although the
meanings of these is not clear)

58

Extract some potentially
useful source models

• static function references (CIA) 3966
static function-global var refs (CIA) 541
dynamic function calls (gprof) 1872

Total 6379

• We are still left with a fundamental problem: how
to deal with one or more large source models?

59

One approach

• Use a query tool against the source model(s)
– For instance, grep

• As necessary, consult source code
– “It’s the source, Luke.”
– Mark Weiser. Source Code. IEEE Computer

20,11 (November 1987)

60

Other approaches
•Visualization
•Reverse engineering
•Summarization

11

61

Visualization
• e.g., Field, Plum,

Imagix 4D, McCabe,
etc.
(Field’s flowview is
used above and on the
next few slides...)

• Note: several of these
are commercial
products

62

Visualization...

63

Visualization...

64

Visualization...

• Provides a “direct” view of the source
model

• View often contains too much information
– Use elision (…)
– With elision you describe what you are not

interested in, as opposed to what you are
interested in

65

Reverse engineering

• e.g., Rigi, various clustering algorithms
(Rigi is used above)

66

Reverse engineering...

12

67

Clustering

• The basic idea is to take one or more source
models of the code and find appropriate
clusters that might indicate “good” modules

• Coupling and cohesion, of various
definitions, are at the heart of most
clustering approaches

• Many different algorithms

68

Rigi’s approach

• Extract source models
• Build edge-weighted flow graphs over these

models
– Discrete sets on the edges, representing the resources

that flow from source to sink
• Compose these to represent subsystems

– Looking for strong cohesion, weak coupling
• The papers define interconnection strength and

similarity measures (with tunable thresholds)

69

An aerodynamics program

• Based on
mathematical
concept analysis

• 106KLOC Fortran
• 20 years old
• 317 subroutines
• 492 global

variables
• 46 COMMON

blocks
70

Reverse engineering recap

• Generally produces a higher-level view that
is consistent with source

• Sometimes view still contains too much
information leading again to the use of
techniques like elision

71

Summarization

• e.g., software reflexion models

72

Summarization...
• A map file specifies the correspondence

between parts of the source model and parts
of the high-level model
[file=HTTCP mapTo=TCPIP]
[file=^SGML mapTo=HTML]
[function=socket mapTo=TCPIP]
[file=accept mapTo=TCPIP]
[file=cci mapTo=TCPIP]
[function=connect mapTo=TCPIP]
[file=Xm mapTo=Window]
[file=^HT mapTo=HTML]
[function=.* mapTo=GUI]

13

73

Summarization...

74

Summarization...

• Condense (some or all) information in terms of a
high-level view quickly
– In contrast to visualization and reverse engineering,

produce an “approximate” view
– Iteration can be used to move towards a “precise” view

• Some evidence that it scales effectively
• May be difficult to assess the degree of

approximation

75

Case study: A task on Excel
• A series of approximate tools were used by

a Microsoft engineer to perform an
experimental reengineering task on Excel

• The task involved the identification and
extraction of components from Excel

• Excel (then) comprised about 1.2 million
lines of C source
– About 15,000 functions spread over ~400 files

76

The process used

Model
Mapping

Extraction

Tool

1

2

3

4

RM

Tools

Reflexion

Model

System

Artifacts

Source

Model

77,746

calls

170 entries

13 nodes

~19 arcs

77

An initial Reflexion Model
•The initial Reflexion
Model computed had
15 convergences, 83,
divergences, and 4
absences

•It summarized 61% of
calls in source model

Graph

Sheet

File

0

36734

912

1210

.
.
.

...

78

An iterative process
•Over a 4+ week period
•Investigate an arc
•Refine the map

–Eventually over 1000 entries
•Document exceptions
•Augment the source model

–Eventually, 119,637 interactions

14

79

A refined Reflexion Model

Sheet

File

Wks_File

4975

1242

2207

88

69

1160

87

713

...

...

... •A later Reflexion
Model summarized
99% of 131,042 call
and data interactions

•This approximate view
of approximate
information was used
to reason about, plan
and automate portions
of the task

Graph

Sheet

File

0

36734

912

1210

.
.
.

...

80

Results
• Microsoft engineer judged the use of the Reflexion Model

technique successful in helping to understand the system
structure and source code

“Definitely confirmed suspicions about the structure of
Excel. Further, it allowed me to pinpoint the deviations. It
is very easy to ignore stuff that is not interesting and
thereby focus on the part of Excel that I want to know
more about.” — Microsoft A.B.C. (anonymous by choice)
engineer

81

Which ideas are important?
• Source code, source code, source code
• Task, task, task

– The programmer decides where to increase the focus, not the tool
• Iterative, pretty fast
• Doesn’t require changing other tools nor standard process being used
• Text representation of intermediate files
• A computation that the programmer fundamentally understands

– Indeed, could do manually, if there was only enough time
• Graphical may be important, but also may be overrated in some

situations

82

Summary

• Evolution is done in a relatively ad hoc way
– Much more ad hoc than design, I think

• Putting some intellectual structure on the
problem might help
– Sometimes tools can help with this structure,

but it is often the intellectual structure that is
more critical

