
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Department of Computer Science & Engineering
Spring 2006

2

Very High-Level View
• Requirements define the clients’ view

– What the system is supposed to do
– Focuses on external behavior

• Design captures the developers’ view
– How the requirements are realized
– Defines the internal structure of the solution

• But: “What” vs. “How”
• Also, reminiscent of the Brian Cantwell Smith diagram in

Jackson’s video

3

Today

• Some general background on design
– Decomposition, composition
– Managing complexity, anticipating change
– Etc.

• Then …
– Information hiding
– Layering/ “uses” relation
– Software architecture, patterns, etc.
– Later in the quarter – cross-cutting concerns (aspect-

oriented approachs) by Miryung

4

Complexity

• “Software entities are more complex for
their size than perhaps any other human
construct, because no two parts are alike (at
least above the statement level). If they
are, we make the two similar parts into
one… In this respect software systems
differ profoundly from computers,
buildings, or automobiles, where repeated
elements abound.” —Brooks, 1986

5

Continuous & iterative

• High-level (“architectural”) design
– What pieces?
– How connected?

• Low-level design
– Should I use a hash table or binary search tree?

• Very low-level design
– Variable naming, specific control constructs, etc.
– About 1000 design decisions at various levels are

made in producing a single page of code

6

Multiple design choices

• There are multiple (perhaps unbounded) designs
that satisfy (at least the functional) aspects of a
given set of requirements

• How does one choose among these alternatives?
– How does one even identify the alternatives?
– How does one reject most bad choices quickly?
– What criteria distinguish good choices from bad

choices?

2

7

What criteria?

• In general, there are three high level
answers to this question: and, it is very
difficult to answer precisely
1. Satisfying functional and performance

requirements
• Maybe this is too obvious to include
• Often not achieved, though

2. Managing complexity
3. Accommodating future change

8

1. Managing complexity

• “The technique of mastering complexity has been known
since ancient times: Divide et impera (Divide and Rule).”
—Dijkstra, 1965

• “…as soon as the programmer only needs to consider
intellectually manageable programs, the alternatives he is
choosing from are much, much easier to cope with.”
—Dijkstra, 1972

• The complexity of the software systems we are asked to
develop is increasing, yet there are basic limits upon our
ability to cope with this complexity. How then do we
resolve this predicament?” —Booch, 1991

9

Brooks:
accidental vs. inherent complexity

• It’s important to know which you are facing
• That is, which come from the problem

itself and which come from your design,
your platform, etc.

10

Divide and conquer

• We have to decompose large systems to be able to build
them
– The “modern” problem of composing systems from pieces is

equally or more important
• It’s not modern, though: we’ve had to compose for as long as we

have decomposed
– And closely related to decomposition in many ways

• For software, decomposition techniques are distinct from
those used in physical systems
– Fewer constraints are imposed by the material
– Shanley principle?

11

Composition

• “Divide and conquer. Separate your concerns.
Yes. But sometimes the conquered tribes must be
reunited under the conquering ruler, and the
separated concerns must be combined to serve a
single purpose.”
 —M. Jackson, 1995

• Jackson’s view of composition as printing with
four-color separation

• Composition in programs is not as easy as
conjunction in logic

12

Benefits of decomposition

• Decrease size of tasks
• Support independent testing and analysis
• Separate work assignments
• Ease understanding

3

13

Which decomposition?
• How do we select a decomposition?

– We determine the desired criteria
– We select a decomposition (design) that will achieve those criteria

• In theory, that is; in practice, it’s hard to
– Determine the desired criteria with precision
– Tradeoff among various conflicting criteria
– Figure out if a design satisfies given criteria
– Find a better one that satisfies more criteria

• In practice, it’s easy to
– Build something designed pretty much like the last one
– This has benefits, too: understandability, properties of the pieces,

etc.

14

Structure

• The focus of most design approaches is
structure

• What are the components and how are they
put together?

• Behavior is important, but largely indirectly
– Satisfying functional and performance

requirements

15

So what happens?

• People often buy into a particular approach
or methodology
– Ex: UML, structured analysis and design, object-

oriented design, JSD, Hatley-Pirbai, etc.

• “Beware a methodologist who is more
interested in his methodology than in your
problem.” —M. Jackson

16

Conceptual integrity

• Brooks and others assert that conceptual integrity is a
critical criterion in design
– “It is better to have a system omit certain anomalous features and

improvements, but to reflect one set of design ideas, than to have
one that contains many good but independent and uncoordinated
ideas.” —Brooks, MMM

• Such a design often makes it far easier to decide what is
easy and reasonable to do as opposed to what is hard and
less reasonable to do
– This is not always what management wants to hear

17

2. Accommodating change

• “…accept the fact of change as a way of
life, rather than an untoward and annoying
exception.” —Brooks, 1974

• Software that does not change becomes
useless over time. —Belady and Lehman

• Internet time makes the need to
accommodate change even more apparent

18

Anticipating change

• It is generally believed that to
accommodate change one must anticipate
possible changes
– Counterpoint: Extreme Programming

• By anticipating (and perhaps prioritizing)
changes, one defines additional criteria for
guiding the design activity

• It is not possible to anticipate all changes

4

19

Rationalism vs. empiricism:
Brooks talk -- The Design of Design
• rationalism — the doctrine that knowledge

is acquired by reason without resort to
experience [WordNet]

• empiricism — the doctrine that knowledge
derives from experience [WordNet]

20

Examples

•Life
–Aristotle vs. Galileo
–France vs. Britain
–Descartes vs. Hume
–Roman law vs. Anglo-

Saxon law

•Software (Wegner)
– Prolog vs. Lisp
– Algol vs. Pascal
– Dijkstra vs. Knuth
– Proving programs vs.

testing programs

21

Brooks’ view
• Brooks says he is a “thoroughgoing, died-in-the-wool

empiricist.”
• “Our designs are so complex there is no hope of getting

them right first time by pure thought. To expect to is
arrogant.”

• “So, we must adopt design-build processes that
incorporate evolutionary growth …
– “Iteration, and restart if necessary
– “Early prototyping and testing with real users”

• Maybe this is more an issue of requirements and
specification, but I think it applies to design, too
– “Plan to throw one away, you will anyway.”

22

Properties of design

• Cohesion
• Coupling
• Complexity
• Correctness
• Correspondence

• Makes designs “better”, one presumes
• Worth paying attention to

23

Cohesion

• The reason that elements are found together
in a module
– Ex: coincidental, temporal, functional, …

• The details aren’t critical, but the intent is
useful

• During maintenance, one of the major
structural degradations is in cohesion

24

Coupling

• Strength of interconnection between modules
• Hierarchies are touted as a wonderful coupling

structure, limiting interconnections
– But don’t forget about composition, which requires

some kind of coupling
• Coupling also degrades over time

– “I just need one function from that module…”
– Low coupling vs. no coupling

5

25

Unnecessary coupling hurts

• Propagates effects of changes more widely
• Harder to understand interfaces

(interactions)
• Harder to understand the design
• Complicates managerial tasks
• Complicates or precludes reuse

26

It’s easy to...

• ...reduce coupling by calling a system a
single module

• …increase cohesion by calling a system a
single module

⇒ No satisfactory measure of coupling
– Either across modules or across a system

27

Complexity

• Well, yeah, simpler designs are better, all
else being equal

• But, again, no useful measures of
design/program complexity exist
– Although there are dozens of such measures
– My understanding is that, to the first order,

most of these measures are linearly related to
“lines of code”

28

Correctness

• Well, yeah
• Even if you “prove” modules are correct,

composing the modules’ behaviors to
determine the system’s behavior is hard

• Leveson and others have shown clearly that
a system can fail even when each of the
pieces work properly
– Many systems have “emergent” properties

29

Correspondence
• “Problem-program mapping”
• The way in which the design is

associated with the requirements
• The idea is that the simpler the

mapping, the easier it will be to
accommodate change in the
design when the requirements
change

• M. Jackson: problem frames
–In the style of Polya

Requirements

Design

Implementation

30

Functional decomposition

• Divide-and-conquer based on functions
• input;

• compute;

• output

• Then proceed to decompose compute
• This is stepwise refinement (Wirth, 1971)
• There is an enormous body of work in this area, including

many formal calculi to support the approach
– Closely related to proving programs correct

• More effective in the face of stable requirements

6

31

Question

• To what degree do you consider your systems
– as having modules?
– as consisting of a set of files?

• This is a question of physical vs. logical structure
of programs
– In some languages/environments, they are one and the

same
– Ex: Smalltalk-80

32

Aside: Physical structure

• Almost all the literature focuses on logical
structures in design

• But physical structure plays a big role in
practice
– Sharing
– Separating work assignments
– Degradation over time

• Why so little attention paid to this?

33

Recap

• High-level, but needed for basic discussion
on design

34

Information hiding

• Information hiding is perhaps the most
important intellectual tool developed to
support software design [Parnas 1972]
– Makes the anticipation of change a centerpiece

in decomposition into modules
• Provides the fundamental motivation for

abstract data type (ADT) languages
– And thus a key idea in the OO world, too

35

Basics of information hiding

• Modularize based on anticipated change
– Fundamentally different from Brooks’ approach in

OS/360 (see old and new MMM)
• Separate interfaces from implementations

– Implementations capture decisions likely to change
– Interfaces capture decisions unlikely to change
– Clients know only interface, not implementation
– Implementations know only interface, not clients

• Modules are also work assignments
36

Anticipated changes

• The most common anticipated change is
“change of representation”
– Anticipating changing the representation of

data and associated functions (or just functions)
– Again, a key notion behind abstract data types

• Ex:
– Cartesian vs. polar coordinates; stacks as

linked lists vs. arrays; packed vs. unpacked
strings

7

37

Claim
• We less frequently change representations than we used to

– We have significantly more knowledge about data structure
design than we did 25 years ago

– Memory is less often a problem than it was previously, since it’s
much less expensive

• Therefore, we should think twice about always
anticipating that representations will change
– This is important, since we can’t simultaneously anticipate all

changes
– Ex: Changing the representation of null-terminated strings in Unix

systems wouldn’t be sensible
• And this doesn’t represent a stupid design decision

38

Other anticipated changes?

• Information hiding isn’t only ADTs
• Algorithmic changes

– (These are almost always part and parcel of ADT-
based decompositions)

– Monolithic to incremental algorithms
– Improvements in algorithms

• Replacement of hardware sensors
– Ex: better altitude sensors

• More?

39

Ubiquitous computing domain

• Portolano is a UW CSE project on this topic
– Devices everywhere, handhelds, on-body devices,

automated laboratories, etc.
• The set of anticipated changes is significantly

different than in many other domains
– Data is more stable than computations
– Must accommodate diversity in communication speed,

reliability, etc.
• Interesting domain for information hiding

40

Central premise I

• We can effectively anticipate changes
– Unanticipated changes require changes to interfaces or

(more commonly) simultaneous changes to multiple
modules

• How accurate is this premise?
– We have no idea
– There is essentially no research about whether

anticipated changes happen
– Nor do we have disciplined ways to figure out how to

better anticipate changes

41

The A-7 Project
• In the late 1970’s, Parnas led a project to redesign

the software for the A-7 flight program
– One key aspect was the use of information hiding

• The project had successes, including a much
improved specification of the system and the
definition of the SCR requirements language
– Actually, in one way it was a failure – the idea was to

compare the old and new approaches, but the new one
was so much better that the old one was dropped
quickly, allowing few direct comparisons

• But little data about actual changes was gathered

42

Central premise II
• Changing an implementation is the best change,

since it’s isolated
• This may not always be true

– Changing a local implementation may not be easy
– Some global changes are straightforward

• Mechanically or systematically
– VanHilst’s work showed an alternative

• Using parameterized classes with a deferred supertype
[ISOTAS, FSE, OOPSLA]

• Nice followup work by Smaragdakis & Batory [ECOOP 98]
– Griswold’s work on information transparency

8

43

Central premise III

• The semantics of the module must remain
unchanged when implementations are
replaced
– Specifically, the client should not care how the

interface is implemented by the module
• But what captures the semantics of the

module?
– The signature of the interface? Performance?

What else?
44

Central premise IV

• One implementation can satisfy multiple
clients
– Different clients of the same interface that

need different implementations would be
counter to the principle of information hiding

• Clients should not care about implementations, as
long as they satisfy the interface

– Kiczales’ work on open implementations (the
predecessor of aspect-oriented programming)

45

Information hiding reprise

• It’s probably the most important design
technique we know

• And it’s broadly useful
• It raised consciousness about change
• But one needs to evaluate the premises in

specific situations to determine the actual
benefits (well, the actual potential benefits)

46

Information Hiding and OO

• Are these the same? Not really
– OO classes are chosen based on the domain of

the problem (in most OO analysis approaches)
– Not necessarily based on change

• But they are obviously related (separating
interface from implementation, e.g.)

• What is the relationship between sub- and
super-classes?

47

Layering [Parnas 79]

• A focus on information hiding modules
isn’t enough

• One may also consider abstract machines
– In support of program families

• Systems that have “so much in common that it pays
to study their common aspects before looking at the
aspects that differentiate them”

• Still focusing on anticipated change

48

The uses relation

• A program A uses a program B if the
correctness of A depends on the presence of
a correct version of B

• Requires specification and implementation
of A and the specification of B

• Again, what is the “specification”? The
interface? Implied or informal semantics?
– Can uses be mechanically computed?

9

49

uses vs. invokes

• These relations
often but do not
always coincide

• Invocation without
use: name service
with cached hints

• Use without
invocation:
examples?

ipAddr := cache(hostName);

if wrong(ipAddr,hostName) then

 ipAddr := lookup(hostName)

endif

50

Parnas’ observation

• A non-hierarchical uses relation makes it
difficult to produce useful subsets of a
system
– It also makes testing difficult
– (What about upcalls?)

• So, it is important to design the uses
relation

51

Criteria for uses(A,B)

• A is essentially simpler because it uses B
• B is not substantially more complex

because it does not use A
• There is a useful subset containing B but

not A
• There is no useful subset containing A but

not B

52

Layering in THE
(Dijkstra’s layered OS)

• OK, those of you who took OS
• How was layering used, and how does it

relate to this work?

• (For thinking about off-line, or for email
discussion)

53

Modules and layers interact?
• Information

hiding
modules and
layers are
distinct
concepts

• How and
where do they
overlap in a
system?

Process ADT

Segment ADT

Process

Creation

Segment Mgmt.

Process Mgmt.

Segment Creation

54

Language support

• We have lots of language support for information
hiding modules
– C++ classes, Ada packages, etc.

• We have essentially no language support for
layering
– Operating systems provide support, primarily for

reasons of protection, not abstraction
– Big performance cost to pay for “just” abstraction

10

55

Implicit invocation:
event-based design

• Implicit invocation
– Essentially, event-based design

56

Implicit invocation

• Components announce events that other components can
choose to respond to

• Components register interest in those events that they
want to respond to

• In implicit invocation, the invokes relation is the
inverse of the names relation

• Invocation does not require ability to name
• The central goal is to ease change: the components

invoked can be changed without modifying the
announcing component

57

Old II mechanisms

• Field [Reiss], DEC FUSE, HP Softbench, etc.
– Components announce events as ASCII messages
– Components register interest using regular expressions
– Centralized multicast message server

• Smalltalk’s Model-View-Controller
– Registering with objects
– Separating UI views from internal models
– May request permission to change

58

New II mechanisms:
or extensive uses of them

• JDK’s
– Different versions have somewhat different

event models
• Java beans, Swing, …
• CORBA and COM

59

Objective

• Most of you are at least comfortable with using
events
– Probably primarily in the context of existing

components and frameworks
• Several issues to cover

– Thinking of implicit invocation as more than “just”
events

– Identifying some concrete software engineering
reasons to use it

– Identifying some limitations

60

Not just indirection
• There is often confusion between implicit invocation and

indirect invocation
– Calling a virtual function is a good example of indirect invocation

• The calling function doesn’t know the precise callee, but it knows it
is there and that there is only one

• Not true in general in implicit invocation

• An announcing component should not use (in the Parnas
sense) any responding components
– This is extremely difficult to define precisely
– Roughly, the post-condition of the announcing component should

not depend on any computation of the implicitly invoked
components

11

61

Mediators

• One style of using implicit invocation is the use
of mediators [Sullivan & Notkin]

– Also the “mediator” design pattern
• This approach combines events with entity-

relationship designs
• The intent is to ease the development and

evolution of integrated systems
– Manage the coupling and isolate behavioral

relationships between components

62

Experience

• A radiation treatment planning (RTP) system
(Prism) was designed and built using this
technique
– By a radiation oncologist [Kalet]
– A third generation RTP system
– In clinical use at UW and several other major research

hospitals
– http://www.radonc.washington.edu/physics/prism/
– See the screenshots on next slides

63 64

65 66

Example problem

• Given two sets S1 and S2, how do you
ensure that they are always consistent?
– You can independently add or delete elements

from either set
• Ideas?

12

67

A standard solution

• Encapsulate both S1 and S2 in a
component that
– Exports insert-S1, insert-S2, delete-S1, delete-

S2 methods
– Implements these new methods to ensure

consistency
• How effective is this solution?

68

Example solution: mediators
• Each set allows insertion and

deletion of elements
• Each set also announces an

“inserted” event and a
“removed” event when the
associated operation is
performed

• A separate component, a
mediator M, registers interest
in the events from both sets

• Ex: If an element is inserted
into S1, then M receives an
“inserted” event; it then can
invoke the insert method on S2

S1

insert element

remove element

S2

insert element

remove element

M

Register Register

Announce Announce

Call Call

inserted element

removed element

inserted element

removed element

69

Mediator issues

• Must avoid circularity
• Events are first-class elements in interfaces

– “interface” and “out-erface”
• Makes many changes easier

– lazy equivalence
– allow size of the sets to be changed directly
– …

70

Mediator: with lazy update

S1

insert element

remove element

S2

insert element

remove element

M

Register Register

Announce Announce

Call Call

inserted element

removed element

inserted element

removed element

toggle lazy

• Only maintain
equivalence of sets
when a bit is set

• When the bit is
moved from off to
on, re-establish
consistency

71

Mediators: lazy and count

S1

insert element

remove element

S2

insert element

remove element

M

Register Register

Announce Announce

Call Call

inserted element

removed element

inserted element

removed element

toggle lazy

C

Register

Count

Call

• Track an
integer with
the count of
the set elements

• With or
without the
lazy
modification

72

Assessment

• For some classes of systems and changes,
mediator-based designs seem attractive

• Lots of outstanding issues
– Circularities in relations
– Ordering of mediators
– Distributed and concurrent variants
– Reasoning (even informally) about systems built with

implicit invocation
• Even “just” debugging

