
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Department of Computer Science & Engineering
Winter 2002

2

Weakest preconditions:
predicate transformers

• An alternative formulation to Hoare triples is to
use Dijkstra's weakest precondition predicate
transformers

• In essence, they provide a functional approach to
proving programs correct

• wp(Q,S) is defined to be the weakest logical
predicate that must be true before executing S in
order to prove that postcondition Q is true
afterwards

3

Examples

• wp(x > 10,x:=x+1) = x > 9

• wp(Q,skip) = Q

• wp(Q,S1;S2) = wp(wp(Q,S2),S1)

• wp(Q, if C then S1 else S2) =
(wp(Q,S1) and C) or (wp(Q,S2) and not C) =
(C implies wp (S1,Q)) and
(not C implies wp(S2,Q))

4

wp and Hoare triples

• In general, there is a direct analogy between
Hoare triples and wp proofs

• On the whole, wp proofs seem a little more
straightforward, as they seem to capture the
intuitive notion of backwards reasoning for
proofs more effectively

5

A wp proof example

wp(x > 0, if x > 0 then x := x + 1 else x := -x fi)

(wp(x > 0,x := x + 1) and x > 0) or
(wp(x > 0,x := -x) and x <= 0)

(x > 0 and x + 1 > 0) or (x <= 0 and –x > 0)

(x > 0 and x > -1) or (x <= 0 and x < 0)

x > 0 or x < 0

x <> 0

6

Proofs of Abstract Data Types:
related problem to proofs of functions

• Given an abstract data type A and an implementation C of
that type, how do we prove that C satisfies A’s
specification?

• The approach I’ll sketch is due to Hoare
– Precisely define the ADT and the implementation, including

invariants over their representations
– Define an abstraction function that maps a state in the

implementation to a state in the abstract representation
– Very roughly, show for all legal implementation states that

applying the abstraction function followed by an abstract operation
is equivalent to applying the associated concrete operation
followed by the abstraction function

2

7

Pictorially:
g(f(CS)) = f(h(CS)) = AS’

Abstract
State (AS)

Abstract
State’ (AS’)

Concrete
State (CS)

Concrete
State’ (CS’)

h: concrete operation CO

g: abstract operation AO

f: abstraction function

8

Precisely define A:
use pre- and post-conditions

ADT Stack is
private s == <>
const maxSize;

Push(x) { pre == !Full()
post == s' = s || <x> }

Pop() { pre == !Empty()
post == s' = <s1..sN-1> }

Top(): int { pre == !Empty()
post == Top = sN and s' = s }

Empty(): bool { post == Empty = (s = <>) and
s' = s }

Full(): bool { post ==
Full = (len(s) = maxSize and s' = s }

end Stack

9

Abstract invariants

• We may also define an invariant over the
abstraction representations
– All legal abstract states satisfy these invariants

– No abstraction operation may map a legal
abstract state to one that violates the invariants

• In this case, we define the abstract invariant
len(s) <= maxSize

10

Implementation

• The implementation must represent the sequence
in a concrete way (here, as an array)

• package stackImpl is
private int sArray[1..maxSize];
private int sTop := 0;
procedure sPush(int x) is

if !sFull() then
sTop := sTop +1;
sArray[sTop] := x;

fi
end
procedure…

11

Concrete invariants

• We may also define a concrete invariant

• In this case a concrete invariant is
sTop <= maxSize

12

Status

• In essence, the abstraction specifies how to
map an abstract stack to another abstract
stack (perhaps with a return value of the
operation)

• And similarly, the implementation describes
how to map a concrete stack to another
concrete stack

3

13

Abstraction function

• However, there is no association between the
abstract type and its implementation

• To associate them we use an explicit abstraction
function (AF) that maps a state in the concrete
implementation to a state in the abstract
representation
– That is, it describes how to interpret a state in the

concrete machine as a state in the abstract machine
– For the example, the abstraction function maps the
[1..sTop] elements in sArray to a sequence of
elements in the stack's s variable

14

Abstraction function: many-to-one

• In general (and in this example), many different
concrete states map to the same abstract state

• sTop = 3 and sArray = [1,2,3,4,5,6] and
sTop = 3 and sArray = [1,2,3,6,5,4]

map to the same abstract state: s = <1,2,3>

• The many-to-one nature of abstraction functions is
one reason that the inverse relation that maps
abstract to concrete states is less useful in proofs
(although it seems sensible on the face of it)

15

Proof sketch: reprise

• For each initial concrete state i, show that AF(i)
satisfies the abstract invariant
– That is, make sure that any initial concrete state is a

legal abstract state

• For each operation of the concrete implementation
and its associated abstract operation, given a legal
concrete state c, we need to show
opabs(AF(c)) = AF(opconc(c))

• Essentially, this is a proof by induction that shows
that the concrete operations satisfy the abstract
operations

16

Brief and partial example

• Abstract state: s = <3,1,4,1,5>

• Concrete state:
– sTop = 5

– sArray = [3,1,4,1,5,17,2,8,2,8]

• push(9)
– it’s !Full()

– it returns a new s = <3,1,4,1,5,9>
• sPush(9)

– It’s also not sFull()and returns

• sTop = 6

• sArray = [3,1,4,1,5,9,2,8,2,8]

17

Finish example:
opabs(AF(c)) = AF(opconc(c))

• c = sTop = 5, sArray = [3,1,4,1,5,17,2,8,2,8]

• AF(c) = <3,1,4,1,5>
• push(9) = <3,1,4,1,5,9>

• sPush(9) = sTop = 6, sArray = [3,1,4,1,5,9,2,8,2,8]

• AF(…) = <3,1,4,1,5,9>

18

Dealing with “real” language
features in proofs

• Side-effects
• Parameters
• Exceptions
• goto’s
• OO dispatching
• …

• Most, if not all, of these have been addressed in
the literature: as you can imagine, the proof rules
and obligations become increasingly complex

4

19

Proving programs correct:
useful for a number of reasons

• Provide a sound basis for understanding the relationship
between specifications and implementations

• When working on code, it gives you an intellectual tool
(which you can and will and probably should use
informally most of the time)

• I don't think about loop invariants in 99% of the loops I
write, but when I am having a problem, I often informally
write down or at least determine what the loop invariant
should be

• When debugging a system that uses ADTs, it may help you
separate out potential problems in (a) the abstract
definition, (b) the concrete implementation, and (c) the
abstraction function between them 20

Proofs: issues not addressed (reprise)

• Requirements engineering
– Where did the specification come from? Does it satisfy the needs

of the customer?

• Design
– How does it interact with other parts of the program?

• Evolution
– What happens if the specification is changed?

• Economics
– What is the cost of proving correctness?

• Testing
– Should we rely entirely on the proof?

• …

21

Next: requirements and
specifications

